
Pattern Matching with

Mismatches and Wildcards

Gabriel Bathie1,2, Panagiotis Charalampopoulos3,

Tatiana Starikovskaya1

1. École normale supérieure de Paris, France

2. Université de Bordeaux, France

3. Birkbeck, University of London, UK

ESA 2024

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

The Problem

Pattern Matching

Given a text T and a pattern P, compute the occurrences of P in T.

Easy; a linear-time algorithm is known since 1970 [Morris-Pratt]. However, look-

ing for exact matches of P in T might be too restrictive: think of spelling mis-

takes and corrupt data.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 1 / 15

The Problem

♦♢

Pattern Matching with Wildcards

Given a text T and a pattern P, which may contain wildcards (♦♢), compute

the occurrences of P in T.

If we know the corrupt positions, we can replace their entries with wildcards (♦♢)

which match all letters of the alphabet and perform exact pattern matching. A

long series of works has culminated in an elegant FFT-based O(|T| log |P|)-time

algorithm [Clifford–Clifford; 2007].

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 1 / 15

The Problem

Pattern Matching with Mismatches

Given a text T, a pattern P, and an integer threshold k, compute the sub-

strings of T that are at Hamming distance at most k from P.

Alternatively, we can look for substrings of T that are close to P, e.g., under the

Hamming distance. This is a much harder problem; it admits an Õ(|T| + k ·
|T|/

√
|P|)-time solution [Gawrychowski–Uznanski; 2018].

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 1 / 15

The Problem

♦♢

Pattern Matching with Mismatches and Wildcards

Given a text T, a pattern P, which may contain wildcards (♦♢), and an integer

threshold k, compute the substrings of T that are at Hamming distance at

most k from P.

In this work, we revisit the variant of problem where some of the corrupt posi-

tions are known.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 1 / 15

Previous Work and Our Result

n = |T|, m = |P|
D = # wildcards = 9

G = # groups of wildcards = 4

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

For wildcards in both P and T:

Õ(n
√
m− D) [Amir-Lewenstein-Porat; 2004]

Õ(nk) [Clifford-Efremenko-Porat-Rothschild; 2010]

For wildcards only in P:

Õ(n 3
√
mk) [Clifford-Porat; 2010]

Õ(n
√
k + n ·min{ 3

√
Gk,

√
G}) [Nicolae-Rajasekaran; 2017]

O(n + (n/m)(D + k)(G + k)) [this work]

Fast when D, G, and k are small relative to n. For m = n/2, k = G = n2/5, and

D = n3/5, our algorithm takes O(n) time, improving over O(n6/5).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 2 / 15

Previous Work and Our Result

n = |T|, m = |P|
D = # wildcards = 9

G = # groups of wildcards = 4

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

For wildcards in both P and T:

Õ(n
√
m− D) [Amir-Lewenstein-Porat; 2004]

Õ(nk) [Clifford-Efremenko-Porat-Rothschild; 2010]

For wildcards only in P:

Õ(n 3
√
mk) [Clifford-Porat; 2010]

Õ(n
√
k + n ·min{ 3

√
Gk,

√
G}) [Nicolae-Rajasekaran; 2017]

O(n + (n/m)(D + k)(G + k)) [this work]

Fast when D, G, and k are small relative to n. For m = n/2, k = G = n2/5, and

D = n3/5, our algorithm takes O(n) time, improving over O(n6/5).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 2 / 15

Previous Work and Our Result

n = |T|, m = |P|
D = # wildcards = 9

G = # groups of wildcards = 4

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

For wildcards in both P and T:

Õ(n
√
m− D) [Amir-Lewenstein-Porat; 2004]

Õ(nk) [Clifford-Efremenko-Porat-Rothschild; 2010]

For wildcards only in P:

Õ(n 3
√
mk) [Clifford-Porat; 2010]

Õ(n
√
k + n ·min{ 3

√
Gk,

√
G}) [Nicolae-Rajasekaran; 2017]

O(n + (n/m)(D + k)(G + k)) [this work]

Fast when D, G, and k are small relative to n. For m = n/2, k = G = n2/5, and

D = n3/5, our algorithm takes O(n) time, improving over O(n6/5).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 2 / 15

Previous Work and Our Result

n = |T|, m = |P|
D = # wildcards = 9

G = # groups of wildcards = 4

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

For wildcards in both P and T:

Õ(n
√
m− D) [Amir-Lewenstein-Porat; 2004]

Õ(nk) [Clifford-Efremenko-Porat-Rothschild; 2010]

For wildcards only in P:

Õ(n 3
√
mk) [Clifford-Porat; 2010]

Õ(n
√
k + n ·min{ 3

√
Gk,

√
G}) [Nicolae-Rajasekaran; 2017]

O(n + (n/m)(D + k)(G + k)) [this work]

Fast when D, G, and k are small relative to n. For m = n/2, k = G = n2/5, and

D = n3/5, our algorithm takes O(n) time, improving over O(n6/5).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 2 / 15

The Structure of Exact Pattern Matching

T

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 3 / 15

The Structure of Exact Pattern Matching

T

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 3 / 15

The Structure of Exact Pattern Matching

T

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 3 / 15

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 3 / 15

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 3 / 15

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 3 / 15

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 3 / 15

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 3 / 15

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

The fragment of T spanned by P’s occurrences is periodic as well.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 3 / 15

The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

The standard trick: Our assumption on the length of the text is not restrictive.

If the text is much longer that the pattern, we can always consider separately

O(n/m) fragments of T of length ≤ 3/2m that overlap by m− 1 positions.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 3 / 15

The structure of Pattern Matching with Mismatches was understood only recently!

Long history of algorithmic results. Some of these heavily exploited the periodic

structure of P and T, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz

[BKW’19].

Tightened by C., Kociumaka, and Wellnitz in [CKW’20]; we showed that at least

one of the following holds:

• The pattern P has O(k) k-mismatch occurrences in T.

• The pattern is almost periodic: at Hamming distance < 2k from a string with

period O(m/k).

This structural insight leads to an alternative O(n + k2)-time algorithm [CKW’20].

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 4 / 15

The structure of Pattern Matching with Mismatches was understood only recently!

Long history of algorithmic results. Some of these heavily exploited the periodic

structure of P and T, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz

[BKW’19].

Tightened by C., Kociumaka, and Wellnitz in [CKW’20]; we showed that at least

one of the following holds:

• The pattern P has O(k) k-mismatch occurrences in T.

• The pattern is almost periodic: at Hamming distance < 2k from a string with

period O(m/k).

This structural insight leads to an alternative O(n + k2)-time algorithm [CKW’20].

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 4 / 15

The structure of Pattern Matching with Mismatches was understood only recently!

Long history of algorithmic results. Some of these heavily exploited the periodic

structure of P and T, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz

[BKW’19].

Tightened by C., Kociumaka, and Wellnitz in [CKW’20]; we showed that at least

one of the following holds:

• The pattern P has O(k) k-mismatch occurrences in T.

• The pattern is almost periodic: at Hamming distance < 2k from a string with

period O(m/k).

This structural insight leads to an alternative O(n + k2)-time algorithm [CKW’20].

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 4 / 15

The structure of Pattern Matching with Mismatches was understood only recently!

Long history of algorithmic results. Some of these heavily exploited the periodic

structure of P and T, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz

[BKW’19].

Tightened by C., Kociumaka, and Wellnitz in [CKW’20]; we showed that at least

one of the following holds:

• The pattern P has O(k) k-mismatch occurrences in T.

• The pattern is almost periodic: at Hamming distance < 2k from a string with

period O(m/k).

This structural insight leads to an alternative O(n + k2)-time algorithm [CKW’20].

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 4 / 15

The structure of Pattern Matching with Mismatches was understood only recently!

Long history of algorithmic results. Some of these heavily exploited the periodic

structure of P and T, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz

[BKW’19].

Tightened by C., Kociumaka, and Wellnitz in [CKW’20]; we showed that at least

one of the following holds:

• The pattern P has O(k) k-mismatch occurrences in T.

• The pattern is almost periodic: at Hamming distance < 2k from a string with

period O(m/k).

This structural insight leads to an alternative O(n + k2)-time algorithm [CKW’20].

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 4 / 15

The structure of Pattern Matching with Mismatches was understood only recently!

Long history of algorithmic results. Some of these heavily exploited the periodic

structure of P and T, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz

[BKW’19].

Tightened by C., Kociumaka, and Wellnitz in [CKW’20]; we showed that at least

one of the following holds:

• The pattern P has O(k) k-mismatch occurrences in T.

• The pattern is almost periodic: at Hamming distance < 2k from a string with

period O(m/k).

This structural insight leads to an alternative O(n + k2)-time algorithm [CKW’20].

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 4 / 15

The structure of Pattern Matching with Mismatches was understood only recently!

Long history of algorithmic results. Some of these heavily exploited the periodic

structure of P and T, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz

[BKW’19].

Tightened by C., Kociumaka, and Wellnitz in [CKW’20]; we showed that at least

one of the following holds:

• The pattern P has O(k) k-mismatch occurrences in T.

• The pattern is almost periodic: at Hamming distance < 2k from a string with

period O(m/k).

This structural insight leads to an alternative O(n + k2)-time algorithm [CKW’20].

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 4 / 15

Our Result

An easy reduction to the no-wildcards case yields an analogous combinatorial

result and an algorithm with runtime O(n + (D + k)2) for our problem.

We obtain an algorithm with runtime O(n + (D + k) · (G + k)) and a tighter

combinatorial bound by opening the black box of [CKW’20].

The k-mismatch occurrences of P in T can be decomposed into O((D + k)(G + k))

arithmetic progressions. Lower bound: Ω((D + k)(k + 1)).

What is the right answer?

Bonus: A simple O(n + DG)-time algorithm for exact PM with wildcards.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 5 / 15

Our Result

An easy reduction to the no-wildcards case yields an analogous combinatorial

result and an algorithm with runtime O(n + (D + k)2) for our problem.

We obtain an algorithm with runtime O(n + (D + k) · (G + k)) and a tighter

combinatorial bound by opening the black box of [CKW’20].

The k-mismatch occurrences of P in T can be decomposed into O((D + k)(G + k))

arithmetic progressions. Lower bound: Ω((D + k)(k + 1)).

What is the right answer?

Bonus: A simple O(n + DG)-time algorithm for exact PM with wildcards.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 5 / 15

Our Result

An easy reduction to the no-wildcards case yields an analogous combinatorial

result and an algorithm with runtime O(n + (D + k)2) for our problem.

We obtain an algorithm with runtime O(n + (D + k) · (G + k)) and a tighter

combinatorial bound by opening the black box of [CKW’20].

The k-mismatch occurrences of P in T can be decomposed into O((D + k)(G + k))

arithmetic progressions. Lower bound: Ω((D + k)(k + 1)).

What is the right answer?

Bonus: A simple O(n + DG)-time algorithm for exact PM with wildcards.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 5 / 15

Our Result

An easy reduction to the no-wildcards case yields an analogous combinatorial

result and an algorithm with runtime O(n + (D + k)2) for our problem.

We obtain an algorithm with runtime O(n + (D + k) · (G + k)) and a tighter

combinatorial bound by opening the black box of [CKW’20].

The k-mismatch occurrences of P in T can be decomposed into O((D + k)(G + k))

arithmetic progressions. Lower bound: Ω((D + k)(k + 1)).

What is the right answer?

Bonus: A simple O(n + DG)-time algorithm for exact PM with wildcards.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 5 / 15

Our Result

An easy reduction to the no-wildcards case yields an analogous combinatorial

result and an algorithm with runtime O(n + (D + k)2) for our problem.

We obtain an algorithm with runtime O(n + (D + k) · (G + k)) and a tighter

combinatorial bound by opening the black box of [CKW’20].

The k-mismatch occurrences of P in T can be decomposed into O((D + k)(G + k))

arithmetic progressions. Lower bound: Ω((D + k)(k + 1)).

What is the right answer?

Bonus: A simple O(n + DG)-time algorithm for exact PM with wildcards.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 5 / 15

Warm-up: Choosing a chunk and extending seeds

This technique is also useful in practice.

Observation: P contains a chunk C of length Θ(m/G) that does not contain ♦♢s.

G = 4,D = 9 P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

T

Algorithm strategy: Find the exact matches of C in T and try to extend them to

matches of P. We can verify in O(G) time after O(n)-time preprocessing.

Observation: If the chunk C is aperiodic, its occurrences cannot overlap by more

than |C|/2 positions ⇒ at most n/(|C|/2) = O(G · n/m) = O(G) occurrences.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 6 / 15

Warm-up: Choosing a chunk and extending seeds

This technique is also useful in practice.

Observation: P contains a chunk C of length Θ(m/G) that does not contain ♦♢s.

G = 4,D = 9 P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

T

Algorithm strategy: Find the exact matches of C in T and try to extend them to

matches of P. We can verify in O(G) time after O(n)-time preprocessing.

Observation: If the chunk C is aperiodic, its occurrences cannot overlap by more

than |C|/2 positions ⇒ at most n/(|C|/2) = O(G · n/m) = O(G) occurrences.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 6 / 15

Warm-up: Choosing a chunk and extending seeds

This technique is also useful in practice.

Observation: P contains a chunk C of length Θ(m/G) that does not contain ♦♢s.

G = 4,D = 9 P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

T

Algorithm strategy: Find the exact matches of C in T and try to extend them to

matches of P. We can verify in O(G) time after O(n)-time preprocessing.

Observation: If the chunk C is aperiodic, its occurrences cannot overlap by more

than |C|/2 positions ⇒ at most n/(|C|/2) = O(G · n/m) = O(G) occurrences.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 6 / 15

Warm-up: Choosing a chunk and extending seeds

This technique is also useful in practice.

Observation: P contains a chunk C of length Θ(m/G) that does not contain ♦♢s.

G = 4,D = 9 P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

T

Algorithm strategy: Find the exact matches of C in T and try to extend them to

matches of P. We can verify in O(G) time after O(n)-time preprocessing.

Observation: If the chunk C is aperiodic, its occurrences cannot overlap by more

than |C|/2 positions ⇒ at most n/(|C|/2) = O(G · n/m) = O(G) occurrences.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 6 / 15

Warm-up: Choosing a chunk and extending seeds

This technique is also useful in practice.

Observation: P contains a chunk C of length Θ(m/G) that does not contain ♦♢s.

G = 4,D = 9 P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

T

Algorithm strategy: Find the exact matches of C in T and try to extend them to

matches of P. We can verify in O(G) time after O(n)-time preprocessing.

Observation: If the chunk C is aperiodic, its occurrences cannot overlap by more

than |C|/2 positions ⇒ at most n/(|C|/2) = O(G · n/m) = O(G) occurrences.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 6 / 15

Algorithm’s Overview

Carefully select a chunk. – one of the main novelties of this work

If the chunk has O(D) occurrences in T, verify each of them in O(G) time. – easy

Else, the chunk has small period, that is, per(C) = O(m/D).

• If the period extends to all of P, we use a sliding window approach. – easy

• Else, we have to work a bit more. :)

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 7 / 15

Algorithm’s Overview

Carefully select a chunk. – one of the main novelties of this work

If the chunk has O(D) occurrences in T, verify each of them in O(G) time. – easy

Else, the chunk has small period, that is, per(C) = O(m/D).

• If the period extends to all of P, we use a sliding window approach. – easy

• Else, we have to work a bit more. :)

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 7 / 15

Algorithm’s Overview

Carefully select a chunk. – one of the main novelties of this work

If the chunk has O(D) occurrences in T, verify each of them in O(G) time. – easy

Else, the chunk has small period, that is, per(C) = O(m/D).

• If the period extends to all of P, we use a sliding window approach. – easy

• Else, we have to work a bit more. :)

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 7 / 15

Algorithm’s Overview

Carefully select a chunk. – one of the main novelties of this work

If the chunk has O(D) occurrences in T, verify each of them in O(G) time. – easy

Else, the chunk has small period, that is, per(C) = O(m/D).

• If the period extends to all of P, we use a sliding window approach. – easy

• Else, we have to work a bit more. :)

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 7 / 15

Algorithm’s Overview

Carefully select a chunk. – one of the main novelties of this work

If the chunk has O(D) occurrences in T, verify each of them in O(G) time. – easy

Else, the chunk has small period, that is, per(C) = O(m/D).

• If the period extends to all of P, we use a sliding window approach. – easy

• Else, we have to work a bit more. :)

P ab ♦♢ ♦♢ ♦♢ bababab ♦♢ ♦♢ ♦♢ ♦♢ ♦♢ bababab ♦♢ ♦♢ ♦♢ ♦♢ ab

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 7 / 15

Algorithm’s Overview

Carefully select a chunk. – one of the main novelties of this work

If the chunk has O(D) occurrences in T, verify each of them in O(G) time. – easy

Else, the chunk has small period, that is, per(C) = O(m/D).

• If the period extends to all of P, we use a sliding window approach. – easy

• Else, we have to work a bit more. :)

P ab ♦♢ ♦♢ ♦♢ baaabab ♦♢ ♦♢ ♦♢ ♦♢ ♦♢ bababab ♦♢ ♦♢ ♦♢ ♦♢ ab

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 7 / 15

The Almost Periodic Case

Setting: P matches a prefix of Q∞, where Q is a string that does not contain

wildcards and is of length O(m/D).

Adapted lemma from [CKW’20]: We can efficiently compute a substring T′ of T

that contains all occurrences of P and is at distance O(D) from a prefix of Q∞.

Q∞ · · ·

T′ ∗ ∗ ∗ ∗ ∗

Conceptually, we slide P on T′, |Q| positions at a time. There is an exact occur-

rence whenever all the misperiods on the sliding window are aligned with ♦♢s.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 8 / 15

The Almost Periodic Case

Setting: P matches a prefix of Q∞, where Q is a string that does not contain

wildcards and is of length O(m/D).

Adapted lemma from [CKW’20]: We can efficiently compute a substring T′ of T

that contains all occurrences of P and is at distance O(D) from a prefix of Q∞.

Q∞ · · ·

T′ ∗ ∗ ∗ ∗ ∗

Conceptually, we slide P on T′, |Q| positions at a time. There is an exact occur-

rence whenever all the misperiods on the sliding window are aligned with ♦♢s.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 8 / 15

The Almost Periodic Case

Setting: P matches a prefix of Q∞, where Q is a string that does not contain

wildcards and is of length O(m/D).

Adapted lemma from [CKW’20]: We can efficiently compute a substring T′ of T

that contains all occurrences of P and is at distance O(D) from a prefix of Q∞.

Q∞ · · ·

T′ ∗ ∗ ∗ ∗ ∗

Conceptually, we slide P on T′, |Q| positions at a time. There is an exact occur-

rence whenever all the misperiods on the sliding window are aligned with ♦♢s.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 8 / 15

The Almost Periodic Case

Setting: P matches a prefix of Q∞, where Q is a string that does not contain

wildcards and is of length O(m/D).

Adapted lemma from [CKW’20]: We can efficiently compute a substring T′ of T

that contains all occurrences of P and is at distance O(D) from a prefix of Q∞.

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

Q∞ · · ·

T′ ∗ ∗ ∗ ∗ ∗

Conceptually, we slide P on T′, |Q| positions at a time. There is an exact occur-

rence whenever all the misperiods on the sliding window are aligned with ♦♢s.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 8 / 15

The Almost Periodic Case

Setting: P matches a prefix of Q∞, where Q is a string that does not contain

wildcards and is of length O(m/D).

Adapted lemma from [CKW’20]: We can efficiently compute a substring T′ of T

that contains all occurrences of P and is at distance O(D) from a prefix of Q∞.

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

Q∞ · · ·

T′ ∗ ∗ ∗ ∗ ∗

Conceptually, we slide P on T′, |Q| positions at a time. There is an exact occur-

rence whenever all the misperiods on the sliding window are aligned with ♦♢s.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 8 / 15

The Almost Periodic Case

Setting: P matches a prefix of Q∞, where Q is a string that does not contain

wildcards and is of length O(m/D).

Adapted lemma from [CKW’20]: We can efficiently compute a substring T′ of T

that contains all occurrences of P and is at distance O(D) from a prefix of Q∞.

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

Q∞ · · ·

T′ ∗ ∗ ∗ ∗ ∗

Conceptually, we slide P on T′, |Q| positions at a time. There is an exact occur-

rence whenever all the misperiods on the sliding window are aligned with ♦♢s.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 8 / 15

The Almost Periodic Case

Setting: P matches a prefix of Q∞, where Q is a string that does not contain

wildcards and is of length O(m/D).

Adapted lemma from [CKW’20]: We can efficiently compute a substring T′ of T

that contains all occurrences of P and is at distance O(D) from a prefix of Q∞.

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

Q∞ · · ·

T′ ∗ ∗ ∗ ∗ ∗

Conceptually, we slide P on T′, |Q| positions at a time. There is an exact occur-

rence whenever all the misperiods on the sliding window are aligned with ♦♢s.

O(DG) events yielding O(DG) arithmetic progressions with difference |Q|.
G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 8 / 15

Getting a feel for the hard case via [BKW’19]

Setting: The chunk C has period O(m/D), but this does not extend to all of P.

Structure of exact pattern matching ⇒ occurrences of C in T can be decom-

posed to O(G) disjoint arithmetic progressions (C-runs).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 9 / 15

Getting a feel for the hard case via [BKW’19]

Setting: The chunk C has period O(m/D), but this does not extend to all of P.

Structure of exact pattern matching ⇒ occurrences of C in T can be decom-

posed to O(G) disjoint arithmetic progressions (C-runs).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 9 / 15

Getting a feel for the hard case via [BKW’19]

Setting: The chunk C has period O(m/D), but this does not extend to all of P.

Structure of exact pattern matching ⇒ occurrences of C in T can be decom-

posed to O(G) disjoint arithmetic progressions (C-runs).

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢∗ ababa

T ababababa

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 9 / 15

Getting a feel for the hard case via [BKW’19]

Setting: The chunk C has period O(m/D), but this does not extend to all of P.

Structure of exact pattern matching ⇒ occurrences of C in T can be decom-

posed to O(G) disjoint arithmetic progressions (C-runs).

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢∗ ababa

T ababababa

D + 1 ∗s

∗ ∗ ∗ ∗∗

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 9 / 15

Getting a feel for the hard case via [BKW’19]

Setting: The chunk C has period O(m/D), but this does not extend to all of P.

Structure of exact pattern matching ⇒ occurrences of C in T can be decom-

posed to O(G) disjoint arithmetic progressions (C-runs).

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢∗ ababa

T ababababa

D + 1 ∗s

∗ ∗ ∗ ∗∗

Observation: The misperiod in P must be aligned with one of the first D + 1

misperiods in T. We thus have O(D) candidates, and each can be verified in

O(G) time. Total time: O(DG2).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 9 / 15

Improvement

Goal: Try to generate less candidates per C-run (on average).

A helpful assumption: The ♦♢s in P are well-spread around the chunk: every sub-

string U of P that contains C has O(|U| · D/m) ♦♢s.

Exploiting it: As we compute misperiods in T one by one, we stop if they be-

come too dense; our wildcards are sparse and hence cannot hide all of them.

Amortisation: If while extending a C-run with misperiods, we reach another

run that is synchronised (i.e., their starting positions differ by a multiple of the

period), we do not need to process the latter C-run.

A periodicity-based argument yields that we now need to verify O(D) candidates

over all C-runs! Total time: O(DG).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 10 / 15

Improvement

Goal: Try to generate less candidates per C-run (on average).

A helpful assumption: The ♦♢s in P are well-spread around the chunk: every sub-

string U of P that contains C has O(|U| · D/m) ♦♢s.

Exploiting it: As we compute misperiods in T one by one, we stop if they be-

come too dense; our wildcards are sparse and hence cannot hide all of them.

Amortisation: If while extending a C-run with misperiods, we reach another

run that is synchronised (i.e., their starting positions differ by a multiple of the

period), we do not need to process the latter C-run.

A periodicity-based argument yields that we now need to verify O(D) candidates

over all C-runs! Total time: O(DG).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 10 / 15

Improvement

Goal: Try to generate less candidates per C-run (on average).

A helpful assumption: The ♦♢s in P are well-spread around the chunk: every sub-

string U of P that contains C has O(|U| · D/m) ♦♢s.

Exploiting it: As we compute misperiods in T one by one, we stop if they be-

come too dense; our wildcards are sparse and hence cannot hide all of them.

Amortisation: If while extending a C-run with misperiods, we reach another

run that is synchronised (i.e., their starting positions differ by a multiple of the

period), we do not need to process the latter C-run.

A periodicity-based argument yields that we now need to verify O(D) candidates

over all C-runs! Total time: O(DG).

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢ ♦♢

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 10 / 15

Improvement

Goal: Try to generate less candidates per C-run (on average).

A helpful assumption: The ♦♢s in P are well-spread around the chunk: every sub-

string U of P that contains C has O(|U| · D/m) ♦♢s.

Exploiting it: As we compute misperiods in T one by one, we stop if they be-

come too dense; our wildcards are sparse and hence cannot hide all of them.

Amortisation: If while extending a C-run with misperiods, we reach another

run that is synchronised (i.e., their starting positions differ by a multiple of the

period), we do not need to process the latter C-run.

A periodicity-based argument yields that we now need to verify O(D) candidates

over all C-runs! Total time: O(DG).

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢ ♦♢

T ∗∗∗ ∗∗

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 10 / 15

Improvement

Goal: Try to generate less candidates per C-run (on average).

A helpful assumption: The ♦♢s in P are well-spread around the chunk: every sub-

string U of P that contains C has O(|U| · D/m) ♦♢s.

Exploiting it: As we compute misperiods in T one by one, we stop if they be-

come too dense; our wildcards are sparse and hence cannot hide all of them.

Amortisation: If while extending a C-run with misperiods, we reach another

run that is synchronised (i.e., their starting positions differ by a multiple of the

period), we do not need to process the latter C-run.

A periodicity-based argument yields that we now need to verify O(D) candidates

over all C-runs! Total time: O(DG).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 10 / 15

Improvement

Goal: Try to generate less candidates per C-run (on average).

A helpful assumption: The ♦♢s in P are well-spread around the chunk: every sub-

string U of P that contains C has O(|U| · D/m) ♦♢s.

Exploiting it: As we compute misperiods in T one by one, we stop if they be-

come too dense; our wildcards are sparse and hence cannot hide all of them.

Amortisation: If while extending a C-run with misperiods, we reach another

run that is synchronised (i.e., their starting positions differ by a multiple of the

period), we do not need to process the latter C-run.

A periodicity-based argument yields that we now need to verify O(D) candidates

over all C-runs! Total time: O(DG).

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 10 / 15

What about the assumption?

Lemma: Let V be a binary vector of size N with M := ∥V∥ 1s. We can efficiently

compute a large set U ⊆ [1 . .N] such that for each i ∈ U and radius r ∈ [1 . .N],

∥BV(i, r)∥ ≤ 8r · M/N.

We simply apply the above lemma with ♦♢s mapped to 1s and other letters

mapped to 0s and then select the chunk so that it contains a position in U. We

call such positions sparsifiers.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 11 / 15

What about the assumption?

Lemma: Let V be a binary vector of size N with M := ∥V∥ 1s. We can efficiently

compute a large set U ⊆ [1 . .N] such that for each i ∈ U and radius r ∈ [1 . .N],

∥BV(i, r)∥ ≤ 8r · M/N.

We simply apply the above lemma with ♦♢s mapped to 1s and other letters

mapped to 0s and then select the chunk so that it contains a position in U. We

call such positions sparsifiers.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 11 / 15

What about the assumption?

Lemma: Let V be a binary vector of size N with M := ∥V∥ 1s. We can efficiently

compute a large set U ⊆ [1 . .N] such that for each i ∈ U and radius r ∈ [1 . .N],

∥BV(i, r)∥ ≤ 8r · M/N.

We simply apply the above lemma with ♦♢s mapped to 1s and other letters

mapped to 0s and then select the chunk so that it contains a position in U. We

call such positions sparsifiers.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 11 / 15

What about mismatches?

We open the black-box of [CKW’20], ensure that some of the considered sub-

strings contain sparsifiers, and refine the analysis.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 12 / 15

What about mismatches?

We open the black-box of [CKW’20], ensure that some of the considered sub-

strings contain sparsifiers, and refine the analysis.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 12 / 15

Lower Bound on the Arithmetic Progressions

Large progression-free sets: For any sufficiently large M, there exists an integer

nM = O(M2
√
logM) and a progression-free set S such that S has cardinality M and

S ⊆ [nM]. [Elkin’22]

We use such sets to construct P and T such that P has Ω((D + k) · (k + 1))

k-mismatch occurrences in T and no three occurrences form an arithmetic pro-

gression.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 13 / 15

Lower Bound on the Arithmetic Progressions

Large progression-free sets: For any sufficiently large M, there exists an integer

nM = O(M2
√
logM) and a progression-free set S such that S has cardinality M and

S ⊆ [nM]. [Elkin’22]

We use such sets to construct P and T such that P has Ω((D + k) · (k + 1))

k-mismatch occurrences in T and no three occurrences form an arithmetic pro-

gression.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 13 / 15

Lower Bound on the Arithmetic Progressions

Large progression-free sets: For any sufficiently large M, there exists an integer

nM = O(M2
√
logM) and a progression-free set S such that S has cardinality M and

S ⊆ [nM]. [Elkin’22]

We use such sets to construct P and T such that P has Ω((D + k) · (k + 1))

k-mismatch occurrences in T and no three occurrences form an arithmetic pro-

gression.

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 13 / 15

Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 14 / 15

Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 14 / 15

Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 14 / 15

Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 14 / 15

Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 14 / 15

Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 14 / 15

Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 14 / 15

Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 14 / 15

Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 14 / 15

Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 14 / 15

Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 14 / 15

The End

Thank you for your attention!

Questions?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 15 / 15

