Pattern Matching with Mismatches and Wildcards

Gabriel Bathie^{1,2}, Panagiotis Charalampopoulos³, Tatiana Starikovskaya¹

1. École normale supérieure de Paris, France

2. Université de Bordeaux, France

3. Birkbeck, University of London, UK

ESA 2024

Pattern Matching

Given a text *T* and a pattern *P*, compute the occurrences of *P* in *T*.

Easy; a linear-time algorithm is known since 1970 [Morris-Pratt]. However, looking for exact matches of P in T might be too restrictive: think of spelling mistakes and corrupt data.

Pattern Matching with Wildcards

Given a text *T* and a pattern *P*, which may contain wildcards (\Diamond) , compute the occurrences of *P* in *T*.

If we know the corrupt positions, we can replace their entries with wildcards (\Diamond) which match all letters of the alphabet and perform exact pattern matching. A long series of works has culminated in an elegant FFT-based $\mathcal{O}(|T| \log |P|)$ -time algorithm [Clifford–Clifford; 2007].

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 1 / 15

Pattern Matching with Mismatches

Given a text *T*, a pattern *P*, and an integer threshold *k*, compute the sub-

strings of *T* that are at Hamming distance at most *k* from *P*.

Alternatively, we can look for substrings of *T* that are close to *P*, e.g., under the Hamming distance. This is a much harder problem; it admits an $\tilde{\mathcal{O}}(|\mathcal{T}| + k \cdot \mathcal{O}(\epsilon)$ |*T*|/ $\sqrt{|P|}$)-time solution [Gawrychowski–Uznanski; 2018].

Pattern Matching with Mismatches and Wildcards

Given a text *T*, a pattern *P*, which may contain wildcards (♦), and an integer threshold *k*, compute the substrings of *T* that are at Hamming distance at most *k* from *P*.

In this work, we revisit the variant of problem where some of the corrupt positions are known.

$$
P \begin{array}{|c|c|c|c|c|} \hline \diamond \diamond & \diamond \diamond \diamond & \diamond & \diamond \diamond \diamond \\ \hline \end{array}
$$

$$
n = |T|, m = |P|
$$

$$
D = # \text{ wildcards} = 9
$$

$$
G = # \text{ groups of wildcards} = 4
$$

$$
P \begin{array}{|c|c|c|c|c|} \hline \diamond \diamond & \diamond \diamond \diamond & \diamond & \diamond \diamond \diamond \\ \hline \end{array}
$$

$$
n = |T|, m = |P|
$$

$$
D = # \text{ wildcards} = 9
$$

$$
G = # \text{ groups of wildcards} = 4
$$

For wildcards in both *P* and *T*:

 $\tilde{\mathcal{O}}(n)$ √ *m − D*) [Amir-Lewenstein-Porat; 2004] O˜(*nk*) [Clifford-Efremenko-Porat-Rothschild; 2010]

$$
P \begin{array}{|c|c|c|c|c|} \hline \diamond \diamond & \diamond \diamond \diamond & \diamond & \diamond \end{array}
$$

$$
n = |T|, m = |P|
$$

$$
D = # \text{ wildcards} = 9
$$

$$
G = # \text{ groups of wildcards} = 4
$$

For wildcards in both *P* and *T*:

$$
\tilde{O}(n\sqrt{m-D})
$$
 [Amir-Lewenstein-Porat; 2004]

$$
\tilde{O}(nk)
$$
 [Clifford-Efremenko-Porat-Rothschild; 2010]

For wildcards only in *P*:

$$
\tilde{\mathcal{O}}(n\sqrt{k}+n\cdot\min\{\sqrt[3]{Gk},\sqrt{G}\})
$$

$$
\mathcal{O}(n+(n/m)(D+k)(G+k))
$$

[√]³ *mk*) [Clifford-Porat; 2010] *G*}) [Nicolae-Rajasekaran; 2017] [this work]

$$
P \begin{array}{|c|c|c|c|c|} \hline \diamond \diamond & \diamond \diamond \diamond & \diamond & \diamond \end{array}
$$

$$
n = |T|, m = |P|
$$

$$
D = # \text{ wildcards} = 9
$$

$$
G = # \text{ groups of wildcards} = 4
$$

For wildcards in both *P* and *T*:

 $\tilde{\mathcal{O}}(n)$ √ *m − D*) [Amir-Lewenstein-Porat; 2004] O˜(*nk*) [Clifford-Efremenko-Porat-Rothschild; 2010]

For wildcards only in *P*:

 $\tilde{\mathcal{O}}(n)$

√

O˜(*n* [√]³ *mk*) [Clifford-Porat; 2010] $k + n \cdot min$ { $\frac{3}{3}$ *Gk*, √ *G*}) [Nicolae-Rajasekaran; 2017] $\mathcal{O}(n + (n/m)(D+k)(G+k))$ [this work]

Fast when *D*, *G*, and *k* are small relative to *n*. For $m = n/2$, $k = G = n^{2/5}$, and $D=n^{3/5}$, our algorithm takes $\mathcal{O}(n)$ time, improving over $\mathcal{O}(n^{6/5}).$

Fact [folklore] Given a pattern P of length m and a text T of length $n \leq \frac{3}{2}m$ at least one of the following holds:

• The pattern *P* has at most one occurrence in *T*.

- The pattern *P* has at most one occurrence in *T*.
- The pattern *P* is periodic (per(*P*) \leq $|P|/2$).

- The pattern *P* has at most one occurrence in *T*.
- The pattern *P* is periodic (per(*P*) \leq $|P|/2$).

- The pattern *P* has at most one occurrence in *T*.
- The pattern *P* is periodic (per(*P*) \leq $|P|/2$).

- The pattern *P* has at most one occurrence in *T*.
- The pattern *P* is periodic (per(*P*) \leq $|P|/2$).

- The pattern *P* has at most one occurrence in *T*.
- The pattern *P* is periodic (per(*P*) \leq $|P|/2$).

Fact [folklore] Given a pattern P of length m and a text T of length $n \leq \frac{3}{2}$ m at least one of the following holds:

- The pattern *P* has at most one occurrence in *T*.
- The pattern *P* is periodic (per(*P*) \leq $|P|/2$).

The fragment of *T* spanned by *P*'s occurrences is periodic as well.

Fact [folklore] Given a pattern P of length m and a text T of length $n \leq \frac{3}{2}$ m at least one of the following holds:

- The pattern *P* has at most one occurrence in *T*.
- The pattern *P* is periodic (per(*P*) \leq $|P|/2$).

The standard trick: Our assumption on the length of the text is not restrictive. If the text is much longer that the pattern, we can always consider separately $\mathcal{O}(n/m)$ fragments of *T* of length $\leq \frac{3}{2}m$ that overlap by $m-1$ positions.

Long history of algorithmic results. Some of these heavily exploited the periodic structure of *P* and *T*, and implied some (weak) structural results.

Long history of algorithmic results. Some of these heavily exploited the periodic structure of *P* and *T*, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz [BKW'19].

Long history of algorithmic results. Some of these heavily exploited the periodic structure of *P* and *T*, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz [BKW'19].

Tightened by C., Kociumaka, and Wellnitz in [CKW'20]; we showed that at least one of the following holds:

Long history of algorithmic results. Some of these heavily exploited the periodic structure of *P* and *T*, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz [BKW'19].

Tightened by C., Kociumaka, and Wellnitz in [CKW'20]; we showed that at least one of the following holds:

• The pattern *P* has $O(k)$ *k*-mismatch occurrences in *T*.

Long history of algorithmic results. Some of these heavily exploited the periodic structure of *P* and *T*, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz [BKW'19].

Tightened by C., Kociumaka, and Wellnitz in [CKW'20]; we showed that at least one of the following holds:

- The pattern *P* has $O(k)$ *k*-mismatch occurrences in *T*.
- The pattern is almost periodic: at Hamming distance < 2*k* from a string with period $\mathcal{O}(m/k)$.

Long history of algorithmic results. Some of these heavily exploited the periodic structure of *P* and *T*, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz [BKW'19].

Tightened by C., Kociumaka, and Wellnitz in [CKW'20]; we showed that at least one of the following holds:

- The pattern *P* has $O(k)$ *k*-mismatch occurrences in *T*.
- The pattern is almost periodic: at Hamming distance < 2*k* from a string with period $\mathcal{O}(m/k)$.

This structural insight leads to an alternative $\mathcal{O}(n+k^2)$ -time algorithm [CKW'20].

An easy reduction to the no-wildcards case yields an analogous combinatorial result and an algorithm with runtime $\mathcal{O}(n + (D + k)^2)$ for our problem.

An easy reduction to the no-wildcards case yields an analogous combinatorial result and an algorithm with runtime $\mathcal{O}(n + (D + k)^2)$ for our problem.

We obtain an algorithm with runtime $\mathcal{O}(n + (D + k) \cdot (G + k))$ and a tighter combinatorial bound by opening the black box of [CKW'20].

An easy reduction to the no-wildcards case yields an analogous combinatorial result and an algorithm with runtime $\mathcal{O}(n + (D + k)^2)$ for our problem.

We obtain an algorithm with runtime $\mathcal{O}(n + (D + k) \cdot (G + k))$ and a tighter combinatorial bound by opening the black box of [CKW'20].

The *k*-mismatch occurrences of *P* in *T* can be decomposed into $\mathcal{O}((D+k)(G+k))$ arithmetic progressions. Lower bound: $\Omega((D+k)(k+1))$. What is the right answer?

An easy reduction to the no-wildcards case yields an analogous combinatorial result and an algorithm with runtime $\mathcal{O}(n + (D + k)^2)$ for our problem.

We obtain an algorithm with runtime $\mathcal{O}(n + (D + k) \cdot (G + k))$ and a tighter combinatorial bound by opening the black box of [CKW'20].

The *k*-mismatch occurrences of *P* in *T* can be decomposed into $\mathcal{O}((D + k)(G + k))$ arithmetic progressions. Lower bound: $\Omega((D+k)(k+1)).$ What is the right answer?

Bonus: A simple $\mathcal{O}(n + DG)$ -time algorithm for exact PM with wildcards.

This technique is also useful in practice.

This technique is also useful in practice.

Observation: *P* contains a chunk *C* of length $Θ(m/G)$ that does not contain ♦s.

This technique is also useful in practice.

Observation: *P* contains a chunk *C* of length Θ(*m*/*G*) that does not contain ♢♦s.

Algorithm strategy: Find the exact matches of *C* in *T* and try to extend them to matches of *P*. We can verify in $\mathcal{O}(G)$ time after $\mathcal{O}(n)$ -time preprocessing.

This technique is also useful in practice.

Observation: *P* contains a chunk *C* of length $Θ(m/G)$ that does not contain ♦s.

Algorithm strategy: Find the exact matches of *C* in *T* and try to extend them to matches of *P*. We can verify in $\mathcal{O}(G)$ time after $\mathcal{O}(n)$ -time preprocessing.

Observation: If the chunk *C* is aperiodic, its occurrences cannot overlap by more than $|C|/2$ positions \Rightarrow at most $n/(|C|/2) = \mathcal{O}(G \cdot n/m) = \mathcal{O}(G)$ occurrences.
Carefully select a chunk. – one of the main novelties of this work

Carefully select a chunk. \blacksquare \blacksquare one of the main novelties of this work

If the chunk has $\mathcal{O}(D)$ occurrences in *T*, verify each of them in $\mathcal{O}(G)$ time. – easy

Carefully select a chunk. \blacksquare \blacksquare one of the main novelties of this work

If the chunk has $\mathcal{O}(D)$ occurrences in *T*, verify each of them in $\mathcal{O}(G)$ time. – easy

Else, the chunk has small period, that is, $\text{per}(C) = \mathcal{O}(m/D)$.

Carefully select a chunk. \blacksquare \blacksquare one of the main novelties of this work

If the chunk has $\mathcal{O}(D)$ occurrences in *T*, verify each of them in $\mathcal{O}(G)$ time. – easy

Else, the chunk has small period, that is, $\text{per}(C) = \mathcal{O}(m/D)$.

• If the period extends to all of *P*, we use a sliding window approach. – easy

Carefully select a chunk. \blacksquare \blacksquare one of the main novelties of this work

If the chunk has $\mathcal{O}(D)$ occurrences in *T*, verify each of them in $\mathcal{O}(G)$ time. – easy

Else, the chunk has small period, that is, $\text{per}(C) = \mathcal{O}(m/D)$.

- If the period extends to all of *P*, we use a sliding window approach. easy
- Else, we have to work a bit more. :)

P a b ♢♦ ♢♦ ♢♦ b a a a b a b ♢♦ ♢♦ ♢♦ ♢♦ ♢♦ b a b a b a b ♢♦ ♢♦ ♢♦ ♢♦ a b

Setting: P matches a prefix of Q^∞ , where Q is a string that does not contain wildcards and is of length $\mathcal{O}(m/D)$.

Setting: P matches a prefix of Q^∞ , where Q is a string that does not contain wildcards and is of length $\mathcal{O}(m/D)$.

Adapted lemma from [CKW'20]: We can efficiently compute a substring *T* ′ of *T* that contains all occurrences of *P* and is at distance $\mathcal{O}(D)$ from a prefix of $\mathsf{Q}^\infty.$

Setting: P matches a prefix of Q^∞ , where Q is a string that does not contain wildcards and is of length $\mathcal{O}(m/D)$.

Adapted lemma from [CKW'20]: We can efficiently compute a substring *T* ′ of *T* that contains all occurrences of *P* and is at distance $\mathcal{O}(D)$ from a prefix of $\mathsf{Q}^\infty.$

Conceptually, we slide P on T', $|Q|$ positions at a time. There is an exact occurrence whenever all the misperiods on the sliding window are aligned with \diamond s.

Setting: P matches a prefix of Q^∞ , where Q is a string that does not contain wildcards and is of length $\mathcal{O}(m/D)$.

Adapted lemma from [CKW'20]: We can efficiently compute a substring *T* ′ of *T* that contains all occurrences of *P* and is at distance $\mathcal{O}(D)$ from a prefix of $\mathsf{Q}^\infty.$

Conceptually, we slide P on T', $|Q|$ positions at a time. There is an exact occurrence whenever all the misperiods on the sliding window are aligned with \diamond s.

Setting: P matches a prefix of Q^∞ , where Q is a string that does not contain wildcards and is of length $\mathcal{O}(m/D)$.

Adapted lemma from [CKW'20]: We can efficiently compute a substring *T* ′ of *T* that contains all occurrences of *P* and is at distance $\mathcal{O}(D)$ from a prefix of $\mathsf{Q}^\infty.$

Conceptually, we slide P on T', $|Q|$ positions at a time. There is an exact occurrence whenever all the misperiods on the sliding window are aligned with \diamond s.

Setting: P matches a prefix of Q^∞ , where Q is a string that does not contain wildcards and is of length $\mathcal{O}(m/D)$.

Adapted lemma from [CKW'20]: We can efficiently compute a substring *T* ′ of *T* that contains all occurrences of *P* and is at distance $\mathcal{O}(D)$ from a prefix of $\mathsf{Q}^\infty.$

Conceptually, we slide P on T', $|Q|$ positions at a time. There is an exact occurrence whenever all the misperiods on the sliding window are aligned with \diamond s. $\mathcal{O}(DG)$ events yielding $\mathcal{O}(DG)$ arithmetic progressions with difference $|Q|$.

Setting: The chunk *C* has period $\mathcal{O}(m/D)$, but this does not extend to all of *P*.

Setting: The chunk *C* has period $\mathcal{O}(m/D)$, but this does not extend to all of *P*.

Structure of exact pattern matching \Rightarrow occurrences of C in T can be decomposed to O(*G*) disjoint arithmetic progressions (*C*-runs).

Setting: The chunk *C* has period $\mathcal{O}(m/D)$, but this does not extend to all of *P*.

Structure of exact pattern matching \Rightarrow occurrences of C in T can be decomposed to O(*G*) disjoint arithmetic progressions (*C*-runs).

Setting: The chunk *C* has period $\mathcal{O}(m/D)$, but this does not extend to all of *P*.

Structure of exact pattern matching \Rightarrow occurrences of C in T can be decomposed to O(*G*) disjoint arithmetic progressions (*C*-runs).

Observation: The misperiod in P must be aligned with one of the first $D + 1$ misperiods in *T*. We thus have $\mathcal{O}(D)$ candidates, and each can be verified in $\mathcal{O}(G)$ time. Total time: $\mathcal{O}(DG^2)$.

Goal: Try to generate less candidates per *C*-run (on average).

Goal: Try to generate less candidates per *C*-run (on average).

A helpful assumption: The *♦*s in *P* are well-spread around the chunk: every substring *U* of *P* that contains *C* has $\mathcal{O}(|U| \cdot D/m)$ \Diamond s.

Goal: Try to generate less candidates per *C*-run (on average).

A helpful assumption: The ♢♦s in *P* are well-spread around the chunk: every substring *U* of *P* that contains *C* has $\mathcal{O}(|U| \cdot D/m)$ \Diamond s.

Exploiting it: As we compute misperiods in *T* one by one, we stop if they become too dense; our wildcards are sparse and hence cannot hide all of them.

Goal: Try to generate less candidates per *C*-run (on average).

A helpful assumption: The ♢♦s in *P* are well-spread around the chunk: every substring *U* of *P* that contains *C* has $\mathcal{O}(|U| \cdot D/m)$ \Diamond s.

Exploiting it: As we compute misperiods in *T* one by one, we stop if they become too dense; our wildcards are sparse and hence cannot hide all of them.

Amortisation: If while extending a *C*-run with misperiods, we reach another run that is synchronised (i.e., their starting positions differ by a multiple of the period), we do not need to process the latter *C*-run.

Goal: Try to generate less candidates per *C*-run (on average).

A helpful assumption: The ♢♦s in *P* are well-spread around the chunk: every substring *U* of *P* that contains *C* has $\mathcal{O}(|U| \cdot D/m)$ \Diamond s.

Exploiting it: As we compute misperiods in *T* one by one, we stop if they become too dense; our wildcards are sparse and hence cannot hide all of them.

Amortisation: If while extending a *C*-run with misperiods, we reach another run that is synchronised (i.e., their starting positions differ by a multiple of the period), we do not need to process the latter *C*-run.

A periodicity-based argument yields that we now need to verify $\mathcal{O}(D)$ candidates over all *C*-runs! Total time: O(*DG*).

What about the assumption?

What about the assumption?

Lemma: Let *V* be a binary vector of size *N* with $M := ||V||$ 1s. We can efficiently compute a large set $U \subseteq [1 \dots N]$ such that for each $i \in U$ and radius $r \in [1 \dots N]$, ∥*BV*(*i*,*r*)∥ ≤ 8*r* · *M*/*N*.

What about the assumption?

Lemma: Let *V* be a binary vector of size *N* with $M := ||V||$ 1s. We can efficiently compute a large set $U \subseteq [1 \dots N]$ such that for each $i \in U$ and radius $r \in [1 \dots N]$, ∥*BV*(*i*,*r*)∥ ≤ 8*r* · *M*/*N*.

We simply apply the above lemma with \Diamond s mapped to 1s and other letters mapped to 0s and then select the chunk so that it contains a position in *U*. We call such positions sparsifiers.

What about mismatches?

What about mismatches?

We open the black-box of [CKW'20], ensure that some of the considered substrings contain sparsifiers, and refine the analysis.

Lower Bound on the Arithmetic Progressions

Lower Bound on the Arithmetic Progressions

Large progression-free sets: For any sufficiently large *M*, there exists an integer $n_M = \mathcal{O}(M2)$ √ log *M*) and a progression-free set *S* such that *S* has cardinality *M* and *S* ⊆ [*nM*]. [Elkin'22]

Lower Bound on the Arithmetic Progressions

Large progression-free sets: For any sufficiently large *M*, there exists an integer $n_M = \mathcal{O}(M2)$ √ log *M*) and a progression-free set *S* such that *S* has cardinality *M* and *S* ⊆ $[n_M]$. [Elkin'22]

We use such sets to construct *P* and *T* such that *P* has $\Omega((D + k) \cdot (k + 1))$ *k*-mismatch occurrences in *T* and no three occurrences form an arithmetic progression.

We implement our algorithm in the PILLAR model; it is only based on a set of primitive operations of strings. We thus obtain efficient algorithms for the problem in scope in several other settings:

We implement our algorithm in the PILLAR model; it is only based on a set of primitive operations of strings. We thus obtain efficient algorithms for the problem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

We implement our algorithm in the PILLAR model; it is only based on a set of primitive operations of strings. We thus obtain efficient algorithms for the problem in scope in several other settings:

- when both strings are given in compressed form (e.g., as SLPs);
- when we maintain a dynamic collection of strings;
We implement our algorithm in the PILLAR model; it is only based on a set of primitive operations of strings. We thus obtain efficient algorithms for the problem in scope in several other settings:

- when both strings are given in compressed form (e.g., as SLPs);
- when we maintain a dynamic collection of strings;
- in the quantum setting;

We implement our algorithm in the PILLAR model; it is only based on a set of primitive operations of strings. We thus obtain efficient algorithms for the problem in scope in several other settings:

- when both strings are given in compressed form (e.g., as SLPs);
- when we maintain a dynamic collection of strings;
- in the quantum setting;
- etc.

We implement our algorithm in the PILLAR model; it is only based on a set of primitive operations of strings. We thus obtain efficient algorithms for the problem in scope in several other settings:

- when both strings are given in compressed form (e.g., as SLPs);
- when we maintain a dynamic collection of strings;
- in the quantum setting;
- etc.

We implement our algorithm in the PILLAR model; it is only based on a set of primitive operations of strings. We thus obtain efficient algorithms for the problem in scope in several other settings:

- when both strings are given in compressed form (e.g., as SLPs);
- when we maintain a dynamic collection of strings;
- in the quantum setting;
- etc.

Open problems:

• Is the algorithm optimal?

We implement our algorithm in the PILLAR model; it is only based on a set of primitive operations of strings. We thus obtain efficient algorithms for the problem in scope in several other settings:

- when both strings are given in compressed form (e.g., as SLPs);
- when we maintain a dynamic collection of strings;
- in the quantum setting;
- etc.

- Is the algorithm optimal?
- Close the gap on the number of arithmetic progressions.

We implement our algorithm in the PILLAR model; it is only based on a set of primitive operations of strings. We thus obtain efficient algorithms for the problem in scope in several other settings:

- when both strings are given in compressed form (e.g., as SLPs);
- when we maintain a dynamic collection of strings;
- in the quantum setting;
- etc.

- Is the algorithm optimal?
- Close the gap on the number of arithmetic progressions.
- Edit distance instead of Hamming?

We implement our algorithm in the PILLAR model; it is only based on a set of primitive operations of strings. We thus obtain efficient algorithms for the problem in scope in several other settings:

- when both strings are given in compressed form (e.g., as SLPs);
- when we maintain a dynamic collection of strings;
- in the quantum setting;
- etc.

- Is the algorithm optimal?
- Close the gap on the number of arithmetic progressions.
- Edit distance instead of Hamming?
- More applications for sparsifiers?

The End

Thank you for your attention!

Questions?

G. Bathie, P. Charalampopoulos, T. Starikovskaya Pattern Matching with Mismatches and Wildcards 15 / 15