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The Problem

Pattern Matching

Given a text T and a pattern P, compute the occurrences of P in T.

Easy; a linear-time algorithm is known since 1970 [Morris-Pratt]. However, look-

ing for exact matches of P in T might be too restrictive: think of spelling mis-

takes and corrupt data.
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The Problem

♦♢

Pattern Matching with Wildcards

Given a text T and a pattern P, which may contain wildcards (♦♢), compute

the occurrences of P in T.

If we know the corrupt positions, we can replace their entries with wildcards (♦♢)

which match all letters of the alphabet and perform exact pattern matching. A

long series of works has culminated in an elegant FFT-based O(|T| log |P|)-time

algorithm [Clifford–Clifford; 2007].
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The Problem

Pattern Matching with Mismatches

Given a text T, a pattern P, and an integer threshold k, compute the sub-

strings of T that are at Hamming distance at most k from P.

Alternatively, we can look for substrings of T that are close to P, e.g., under the

Hamming distance. This is a much harder problem; it admits an Õ(|T| + k ·
|T|/

√
|P|)-time solution [Gawrychowski–Uznanski; 2018].
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The Problem

♦♢

Pattern Matching with Mismatches and Wildcards

Given a text T, a pattern P, which may contain wildcards (♦♢), and an integer

threshold k, compute the substrings of T that are at Hamming distance at

most k from P.

In this work, we revisit the variant of problem where some of the corrupt posi-

tions are known.
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Previous Work and Our Result

n = |T|, m = |P|
D = # wildcards = 9

G = # groups of wildcards = 4

P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

For wildcards in both P and T:

Õ(n
√
m− D) [Amir-Lewenstein-Porat; 2004]

Õ(nk) [Clifford-Efremenko-Porat-Rothschild; 2010]

For wildcards only in P:

Õ(n 3
√
mk) [Clifford-Porat; 2010]

Õ(n
√
k + n ·min{ 3

√
Gk,

√
G}) [Nicolae-Rajasekaran; 2017]

O(n + (n/m)(D + k)(G + k)) [this work]

Fast when D, G, and k are small relative to n. For m = n/2, k = G = n2/5, and

D = n3/5, our algorithm takes O(n) time, improving over O(n6/5).
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The Structure of Exact Pattern Matching

T

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).
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The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

The fragment of T spanned by P’s occurrences is periodic as well.
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The Structure of Exact Pattern Matching

T

P

P

Fact [folklore] Given a pattern P of length m and a text T of length n ≤ 3/2m at

least one of the following holds:

• The pattern P has at most one occurrence in T.

• The pattern P is periodic (per(P) ≤ |P|/2).

The standard trick: Our assumption on the length of the text is not restrictive.

If the text is much longer that the pattern, we can always consider separately

O(n/m) fragments of T of length ≤ 3/2m that overlap by m− 1 positions.
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The structure of Pattern Matching with Mismatches was understood only recently!

Long history of algorithmic results. Some of these heavily exploited the periodic

structure of P and T, and implied some (weak) structural results.

First explicit structural result due to Bringmann, Künnemann, and Wellnitz

[BKW’19].

Tightened by C., Kociumaka, and Wellnitz in [CKW’20]; we showed that at least

one of the following holds:

• The pattern P has O(k) k-mismatch occurrences in T.

• The pattern is almost periodic: at Hamming distance < 2k from a string with

period O(m/k).

This structural insight leads to an alternative O(n + k2)-time algorithm [CKW’20].
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Our Result

An easy reduction to the no-wildcards case yields an analogous combinatorial

result and an algorithm with runtime O(n + (D + k)2) for our problem.

We obtain an algorithm with runtime O(n + (D + k) · (G + k)) and a tighter

combinatorial bound by opening the black box of [CKW’20].

The k-mismatch occurrences of P in T can be decomposed into O((D + k)(G + k))

arithmetic progressions. Lower bound: Ω((D + k)(k + 1)).

What is the right answer?

Bonus: A simple O(n + DG)-time algorithm for exact PM with wildcards.
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Warm-up: Choosing a chunk and extending seeds

This technique is also useful in practice.

Observation: P contains a chunk C of length Θ(m/G) that does not contain ♦♢s.

G = 4,D = 9 P ♦♢♦♢ ♦♢♦♢♦♢ ♦♢ ♦♢♦♢♦♢

T

Algorithm strategy: Find the exact matches of C in T and try to extend them to

matches of P. We can verify in O(G) time after O(n)-time preprocessing.

Observation: If the chunk C is aperiodic, its occurrences cannot overlap by more

than |C|/2 positions ⇒ at most n/(|C|/2) = O(G · n/m) = O(G) occurrences.
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Algorithm’s Overview

Carefully select a chunk. – one of the main novelties of this work

If the chunk has O(D) occurrences in T, verify each of them in O(G) time. – easy

Else, the chunk has small period, that is, per(C) = O(m/D).

• If the period extends to all of P, we use a sliding window approach. – easy

• Else, we have to work a bit more. :)
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The Almost Periodic Case

Setting: P matches a prefix of Q∞, where Q is a string that does not contain

wildcards and is of length O(m/D).

Adapted lemma from [CKW’20]: We can efficiently compute a substring T′ of T

that contains all occurrences of P and is at distance O(D) from a prefix of Q∞.

Q∞ · · ·

T′ ∗ ∗ ∗ ∗ ∗

Conceptually, we slide P on T′, |Q| positions at a time. There is an exact occur-

rence whenever all the misperiods on the sliding window are aligned with ♦♢s.
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Conceptually, we slide P on T′, |Q| positions at a time. There is an exact occur-

rence whenever all the misperiods on the sliding window are aligned with ♦♢s.

O(DG) events yielding O(DG) arithmetic progressions with difference |Q|.
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Getting a feel for the hard case via [BKW’19]

Setting: The chunk C has period O(m/D), but this does not extend to all of P.

Structure of exact pattern matching ⇒ occurrences of C in T can be decom-

posed to O(G) disjoint arithmetic progressions (C-runs).
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Observation: The misperiod in P must be aligned with one of the first D + 1

misperiods in T. We thus have O(D) candidates, and each can be verified in

O(G) time. Total time: O(DG2).
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Improvement

Goal: Try to generate less candidates per C-run (on average).

A helpful assumption: The ♦♢s in P are well-spread around the chunk: every sub-

string U of P that contains C has O(|U| · D/m) ♦♢s.

Exploiting it: As we compute misperiods in T one by one, we stop if they be-

come too dense; our wildcards are sparse and hence cannot hide all of them.

Amortisation: If while extending a C-run with misperiods, we reach another

run that is synchronised (i.e., their starting positions differ by a multiple of the

period), we do not need to process the latter C-run.

A periodicity-based argument yields that we now need to verify O(D) candidates

over all C-runs! Total time: O(DG).
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What about the assumption?

Lemma: Let V be a binary vector of size N with M := ∥V∥ 1s. We can efficiently

compute a large set U ⊆ [1 . .N] such that for each i ∈ U and radius r ∈ [1 . .N],

∥BV(i, r)∥ ≤ 8r · M/N.

We simply apply the above lemma with ♦♢s mapped to 1s and other letters

mapped to 0s and then select the chunk so that it contains a position in U. We

call such positions sparsifiers.
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What about mismatches?

We open the black-box of [CKW’20], ensure that some of the considered sub-

strings contain sparsifiers, and refine the analysis.
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Lower Bound on the Arithmetic Progressions

Large progression-free sets: For any sufficiently large M, there exists an integer

nM = O(M2
√
logM) and a progression-free set S such that S has cardinality M and

S ⊆ [nM]. [Elkin’22]

We use such sets to construct P and T such that P has Ω((D + k) · (k + 1))

k-mismatch occurrences in T and no three occurrences form an arithmetic pro-

gression.
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Final Remarks

We implement our algorithm in the PILLAR model; it is only based on a set of

primitive operations of strings. We thus obtain efficient algorithms for the prob-

lem in scope in several other settings:

• when both strings are given in compressed form (e.g., as SLPs);

• when we maintain a dynamic collection of strings;

• in the quantum setting;

• etc.

Open problems:

• Is the algorithm optimal?

• Close the gap on the number of arithmetic progressions.

• Edit distance instead of Hamming?

• More applications for sparsifiers?
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The End

Thank you for your attention!

Questions?
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