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Abstract

We give a fully dynamic single-source shortest paths data structure for planar weighted digraphs with Õ(n4/5)
worst-case update time and O(log2 n) query time. Here, a single update can either change the graph by
inserting or deleting an edge, or reset the source s of interest. All known non-trivial planarity-exploiting exact
dynamic single-source shortest paths algorithms to date had polynomial query time. We then extend our
approach, obtaining a data structure that can maintain a planar digraph under edge insertions and deletions,
and is capable of returning the identifier of the strongly connected component of any query vertex. The
worst-case update and query time bounds are the same as for our single-source distance oracle. To the
best of our knowledge, this is the first fully dynamic strong-connectivity algorithm achieving both sublinear
update time and polylogarithmic query time for an important class of digraphs.
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1. Introduction

The dynamic shortest paths problem seeks for a data structure that maintains a graph under updates
and supports querying for shortest paths and/or distances. Depending on the set of supported updates, we
call such a graph data structure fully dynamic if both edge insertions and deletions are allowed, incremental
if only edge insertions (or edge weight decreases) are supported, or decremental if only edge deletions (or
weight increases) are allowed. In the all-pairs variant of dynamic shortest paths problem one has to support
shortest path queries between any pair of vertices of the graph. In the single-source variant all shortest
paths queries have to originate in a fixed distinguished vertex and the only input to a query is the target
vertex.

For the most general setting where one requires exact answers, Demetrescu and Italiano [2] gave a fully
dynamic algorithm (improved slightly by Thorup [3]) recomputing the all-pairs shortest paths matrix in
nearly optimal Õ(n2) amortized time even if real edge weights are allowed.2 Note that the distance matrix
can be recomputed from scratch in Õ(nm) time [4]. Fully dynamic all-pairs shortest paths data structures
with subcubic worst-case update bounds are also known [5, 6, 7]. There exist faster algorithms if the input
graph is unweighted and partially dynamic (i.e., incremental or decremental) [8, 9, 10]. However, none of the
known results improves upon a trivial, recompute-from-scratch algorithm with Õ(mn) update time and O(1)

query time if the graph is sparse, i.e., m = Õ(n). For the single-source variant, all known non-trivial exact
dynamic shortest paths algorithms [11] are partially dynamic and yield no improvement over the respective
recompute-from-scratch algorithm in the sparse case either.

1An earlier version of this work was presented at ESA 2020 [1].
Email addresses: pcharalampo@gmail.com (Panagiotis Charalampopoulos), a.karczmarz@mimuw.edu.pl (Adam

Karczmarz)
2Throughout this work, the Õ-notation suppresses logO(1) n factors.
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The lack of progress on obtaining an exact fully dynamic single-source shortest paths algorithms with
O(n3−ε) initialization time, O(m1−ε) amortized update time and O(n1−ε) query time at the same time
can be explained by a matching lower bound conditional on the (static) APSP conjecture [12]. In fact,
breaking this barrier even in the partially dynamic setting for undirected unweighted graphs would be a
large breakthrough [13].

As a result, since finding good exact algorithms for general graphs seems hopeless, one needs to look for
approximate solutions, and/or restrict their attention to more structured graph classes and/or undirected
graphs. Indeed, a large body of research has been devoted to designing approximate dynamic shortest paths
algorithms, especially in partially dynamic settings [14, 15, 16, 17, 18, 19, 20, 21, 13, 22, 23, 24, 25, 26,
27, 28, 10, 29, 30], which find many applications, e.g., in various maximum flow related problems [21, 31].
Unfortunately, many of the known fastest approximate dynamic shortest path algorithms (e.g., [14, 23, 25])
suffer from assuming an oblivious adversary, which significantly limits their applicability (cf. e.g., [21]).

Similarly, dynamic shortest paths problems have also been studied for important graph classes like
planar graphs [32, 33, 34, 35, 36, 37] or low-treewidth graphs [33, 38]. The primary reason why faster
dynamic shortest paths algorithms in these cases are possible is the existence of non-trivial distance oracles
for these classes. A distance oracle is a compact representation of the graph’s shortest paths such that
the distance (or a distance estimate) between any pair of vertices can be retrieved efficiently. For general
graphs, such non-trivial distance oracles exist only for undirected graphs and assuming an approximation
ratio of at least 3 [39, 40, 41]. On the contrary, for planar graphs many non-trivial exact distance oracles
have been proposed [42, 43, 44, 34, 35, 36, 45, 46]. The first exact oracles with polylogarithmic query time
and subquadratic space have been obtained only recently [47, 48, 49, 50], following Cabello’s breakthrough
of employing Voronoi diagrams for the planar diameter problem [51]. In addition, near-optimal (in terms of
query time, construction time, and used space) (1 + ε)-approximate distance oracles have been known for
nearly two decades [52, 53], and a lot of effort has been put to push the known bounds as close to optimal
as possible [54, 55, 56, 57].

Dynamic shortest paths in planar graphs. In this paper our focus is on computing shortest paths in dynamic
planar graphs and applications. Klein and Subramamian were the first to give a planarity-exploiting dynamic
shortest paths algorithm [37] – their data structure worked for undirected graphs, was fully dynamic, (1+ε)-
approximate and had Õ(n2/3) update and query time bounds. A data structure with the same bounds (up to
polylogarithmic factors), but for exact distances in directed graphs was obtained in the breakthrough work
of Fakcharoenphol and Rao [34] (later extended and slightly improved in [58, 59, 60, 35, 36]). Abraham
et al. [32] gave a faster (1 + ε)-approximate dynamic algorithm for undirected graphs with Õ(n1/2) update
and query times. Karczmarz [38] matched this bound for directed planar graphs, albeit only in the (1 + ε)-
approximate decremental setting.3 Abboud and Dahlgaard [61] showed that by the APSP conjecture, one
should not expect an exact dynamic all-pairs shortest paths data structure for planar graphs with strongly
sublinear4 product of update time and query time. However, no exact data structure with strongly sublinear
update time and near-linear product of update time and query time is known.

The single-source scenario is much less studied for dynamic planar graphs. Karczmarz [38] showed a
decremental (1+ε)-approximate single-source shortest paths algorithm for minor-free (and thus also planar)
digraphs with Õ(n1/2) update time and O(1) query time. Although not explicitly stated in the literature,
the all-pairs data structure of [36] can be easily converted to a fully dynamic exact single-source distance
oracle with Õ(n/x) update time and Õ(x) query time for any parameter x ∈ [1, n1/3] (we formally show this
in Section 3). However, no fully dynamic single-source shortest paths algorithm for planar graphs to date has
been able to achieve sublinear update time and at the same time either support queries in polylogarithmic
time or at least break through the Õ(n) update-query time product barrier, even in the approximate setting.

Recall that for general graphs, Roditty and Zwick [12] proved a lower bound for the dynamic single-source
shortest paths problem, conditional on the conjectured hardness of the (static) APSP problem.

3In the statements of the results of [32, 38], we have assumed that the edge weights are in [1, nO(1)] for ease of presentation.
4In this paper, by strongly sublinear we mean O(n1−ε) for some ε > 0.
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Conjecture 1 (APSP Conjecture). There exists no algorithm for solving the all-pairs shortest paths problem
in general weighted graphs in time O(n3−ε) for any constant ε > 0.

Abboud and Dahlgaard [61] proved a lower bound, also conditional on the APSP conjecture, for single-
source, single-sink dynamic distance oracles for planar graphs.

Theorem 2 ([61, Theorem 5]). The APSP conjecture implies that there is no algorithm that maintains a
planar graph of size n under edge insertions and deletions in u(n) amortized time per update and answers
distance queries from a fixed source s to a fixed sink t in q(n) amortized time, such that u(n) + q(n) =
O(n1/2−ε) for any constant ε > 0. Furthermore, if q(n) ≥ u(n), the algorithm cannot have q(n) · u(n) =
O(n1−ε). This holds even if the planar embedding of the graph never changes.

Our results. In this paper we show the first exact dynamic single-source shortest paths algorithm for planar
graphs with strongly sublinear update time and polylogarithmic query time. Our algorithm, summarized by
the following theorem and described in Section 3, is deterministic and can be easily extended to report the
corresponding shortest path.

Theorem 3. Let G be a real-weighted planar digraph with a source s ∈ V (G). There exists an O(n log n)-
space data structure maintaining G under edge insertions, edge deletions, and source changes with worst-
case update time O(n4/5 log2 n) that can compute distG(s, v) for any v ∈ V (G) in O(log2 n) time. The
initialization time is O(n log2 n).

To the best of our knowledge, this result constitutes the first known application of additively weighted
Voronoi diagrams machinery (first introduced by Cabello [51]) in dynamic graph algorithms. More specif-
ically, it is obtained by combining fully dynamic maintenance of r-divisions [37, 62], the multiple-source
shortest paths data structure [36, 63], the shortest paths algorithm for dense distance graphs [34], the recent
efficient construction of dual Voronoi diagrams [48] via FR-Dijkstra [34], and the efficient point location
data structure for Voronoi diagrams [50].

We now provide a brief overview of the data structure underlying Theorem 3. We maintain distances
in G from the source vertex s to each boundary vertex of each piece of an r-division of G using FR-Dijkstra.
For each piece of the r-division, we maintain an additively weighted Voronoi diagram augmented with a
point location data structure, with weights equal to the distances from s. Upon a query for distG(s, v), we
perform a point location query on the Voronoi diagram of a piece of the r-division that contains v.

It is worth noting that our data structure (and in fact all data structures obtained in this paper) works
in the most general model of dynamic planar graphs where we only require that G remains planar after each
update. Note that one can test whether each issued update violates the planarity of the graph in O(log3 n)
amortized time per update [65]. Some fully dynamic planar graph algorithms assume a weaker plane model
(e.g., [66, 67, 60]) where some plane embedding of G is fixed and we only allow inserting edges connecting
vertices that lie on a common face of (that embedding of) G.

We also generalize our single-source data structure to the case when, instead of a single source s, a
set of facilities F ⊆ V is given, and our goal is to locate the closest (i.e., minimizing distG(f, v)) facility
f ∈ F for a given query vertex.5 We show that maintaining such a data structure under edge updates issued
to G, or updates to the facilities set F , is possible using Õ(n3/4 · |F |1/4 + n4/5) worst-case update time.
The query time remains O(log2 n). Note that even though multiple-source shortest paths or maximum flow
problems can be typically easily reduced to the single-source case by adding a super-source, such a reduction
does not preserve planarity and indeed handling multiple sources tends to be challenging in planar graphs
(cf. e.g., [68, 69]). Our generalized data structure handles up to O(n1/5) sources as efficiently as the single-
source case. Moreover, the update time remains strongly sublinear unless the number of facilities is not
strongly sublinear.

Surprisingly, we show that the same framework that we use to prove Theorem 3 can be applied to obtain
interesting results not directly related to the shortest paths problem. Namely, in Section 4 we show a fully
dynamic strong-connectivity algorithm for planar graphs, encapsulated in the following theorem.

5One can also view F as a set of sites of a graphic Voronoi diagram – then the query locates the cell of the Voronoi diagram
wrt. F that a given vertex v belongs to.
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Theorem 4. Let G be a planar digraph. There exists an O(n log n)-space data structure maintaining G
under edge insertions and deletions with O(n4/5 log2 n) worst-case update time that can compute the iden-
tifier of the strongly connected component of any v ∈ V (G) in O(log2 n) time. The initialization time is
O(n log2 n).

We now sketch the main ideas behind our fully dynamic strong-connectivity algorithm. As in Subra-
manian’s dynamic all-pairs reachability algorithm [62], the base of our data structure is a graph X, called
a reachability certificate, that sparsifies the reachability information between boundary vertices ∂R of a
fully dynamic r-division R with few holes. Naively recomputing the strongly connected components of X
gives us the restriction of the strongly connected components of G to the boundary vertices ∂R. The main
challenge, of course, is to compute the identifier of a strongly connected component (SCC) of an arbitrary
non-boundary vertex v of G, internal to some piece P of the r-division R. To this end, we use the following
observation: suppose b1, . . . , bk are some vertices of G lying in distinct strongly connected components of G.
Then, v is strongly connected to some bj if and only if bj is in the topologically earliest SCC of G reachable
from v and bj is in the topologically latest SCC of G that can reach v. Roughly speaking, this observation
applied to the boundary vertices of P labeled using the topological order of their respective SCCs in the
certificate X, allows us to identify the SCC of v using two point location queries on the Voronoi diagram of
piece P . Each such point location query, computes, instead of the nearest site of v, the highest (or lowest)
priority site that can reach v (that v can reach, resp.), and can be simulated using a standard point location
query on a Voronoi diagram [50].

Whereas maintaining strongly connected components is a well-studied problem in partially dynamic
settings [70, 71, 72, 73, 29], we are not aware of any non-trivial fully dynamic strongly connected components
data structures designed specifically for this problem for any digraph class – note that one could use a fully
dynamic transitive closure data structure for this task: for example, the dynamic plane transitive closure
data structure of [66] which has Õ(n1/2) update and query time. Such a strongly connected components
data structure (i.e., with both update and query bounds O(n1−ε)) for general graphs is in fact ruled out by
a conditional (on SETH) lower bound [74]. As a result, to the best of our knowledge, we obtain the first
fully dynamic strongly connected components algorithm to achieve sublinear update-query time product for
any important class of digraphs.

The undirected counterpart of the dynamic strongly connected components problem, the dynamic con-
nectivity problem, is very well-studied. Near-optimal deterministic amortized update bounds [75, 76, 77]
and randomized worst-case update bounds [78, 79] (see also [80]) are known for fully dynamic general
graphs. An almost optimal deterministic worst-case update bound was very recently achieved [81, 82]. For
fully dynamic planar graphs polylogarithmic worst-case update bounds are known to be achievable even
deterministically [64].

2. Preliminaries

Throughout the paper we consider as input a simple, directed and weighted planar graph G with n
vertices, and no negative weight cycles. We call a planar graph G plane if some embedding of G is assumed.
We use |G| to denote the number of vertices of G. Since simple planar graphs are sparse, |E(G)| = O(|G|)
as well.

We use the terms weight and length for edges and paths interchangeably throughout the paper. For any
two vertices u, v ∈ V (G), we denote by distG(u, v) the length of some shortest u→ v path in the graph G.

Multiple-source shortest paths. The multiple-source shortest paths (MSSP) data structure [63, 36] represents
all shortest path trees rooted at the vertices of a single face f in a weighted plane digraph using a persistent
dynamic tree. It can be constructed in O(n log n) time, requires O(n log n) space, and can report any
distance between a vertex of f and any other vertex in the graph in O(log n) time. MSSP can be augmented
to also return the first edge of this path (and each of its subsequent edges) in O(log log n) time (cf. [35]).

An alternative implementation of MSSP due to Long and Pettie [47], that uses Euler Tour trees instead
of Link-Cut trees, can be constructed in time n1+o(1), takes space n1+o(1), and answers all queries we are
interested in within logo(1) n time.
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Throughout the paper, we use the MSSP data structure of [63, 36]. Substituting the one of [47] would
improve the query times in Theorems 3 and 4 to log1+o(1) n at the cost of a multiplicative no(1) factor in
each of the other measures of efficiency: update time, space, and initialization time.

Separators and recursive decompositions. Miller [83] showed how to compute, in a triangulated plane graph
with n vertices, a simple cycle of size 2

√
2
√
n that separates the graph into two subgraphs, each with at most

2n/3 vertices. Simple cycle separators can be used to recursively separate a planar graph until pieces have
constant size. The authors of [84] show how to obtain a complete recursive decomposition tree T (G) of a
triangulated graph G using cycle separators in O(n) time. T (G) is a binary tree whose nodes correspond to
subgraphs of G (pieces), with the root being all of G and the leaves being pieces of constant size. We identify
each piece P with the node representing it in T (G). We can thus abuse notation and write P ∈ T (G). The
boundary vertices ∂P of a non-leaf piece P are vertices that P shares with some other piece Q ∈ T (G)
that is not P ’s ancestor. For convenience we define the boundary set ∂L of a leaf piece L to be its entire
vertex set V (L). We assume P to inherit the embedding of G. The faces of P that are faces of G are called
natural, whereas the faces of P that are not natural are the holes of P . The construction of [84] additionally
guarantees that for each piece H ∈ T (G), (a) H is connected, (b) if H is a non-leaf piece, then each natural
face f of H is a face of a unique child of H, (c) H has O(1) holes containing precisely the vertices ∂H.
Throughout, to avoid confusion, we use nodes when referring to T (G) and vertices when referring to G
or its subgraphs. It is well-known [85, 50, 73, 84] that by suitably choosing cycle separators one can also
guarantee that (1)

∑
H∈T (G) |H| = O(n log n), (2)

∑
H∈T (G) |∂H|2 = O(n log n), and (3) |∂H| = O(

√
n/cd),

where node H of T (G) has depth d and c > 1 is some constant.
The recursive decomposition algorithm of [84] works with no changes and maintains all the properties of

T (G) even if the initial graph G has a predefined set of boundary vertices ∂G of size O(
√
|G|) located on

O(1) of G’s faces. These faces are predefined as holes of G and are the only faces of G that are allowed to
be non-triangular.

An r-division [86] R of a planar graph, for r ∈ [1, n], is a decomposition of the graph into O(n/r) pieces,
each of size O(r), such that each piece P has O(

√
r) boundary vertices (denoted ∂P ), i.e., vertices shared

with some other piece of R. We denote by ∂R the set
⋃
P∈R ∂P . If additionally all pieces are connected,

and the boundary vertices of each piece P of the r-division R are distributed among O(1) faces of P (also
called holes6 of P ), we call R an r-division with few holes.

In [84] it was shown that for every r larger than some constant, T (G) admits an r-division with few
holes, i.e., there exists a subset of nodes of T (G) forming an r-division with few holes of G. Using this
property, it is shown in [84] that an r-division with few holes of a triangulated graph can be computed in
linear time. More generally, given a geometrically decreasing sequence of numbers (rm, rm−1, . . . , r1), where
r1 is a sufficiently large constant, ri+1/ri ≥ b for all i for some b > 1, and rm = n, we can obtain ri-divisions
with few holes for all i in time O(n) in total. For convenience, we define the only piece in the rm-division to
be G itself. These r-divisions satisfy the property that a piece in the ri-division is a – not necessarily strict
– descendant (in T (G)) of a piece in the rj-division for each j > i. We also call such sequence of ri-divisions
obtained from T (G) a recursive (rm, . . . , r1)-division of G.

We assume for simplicity that all holes we ever encounter are simple cycles. Unfortunately, this is not
true in general. However, non-simple holes do not pose a significant obstacle, and can be avoided by suitably
extending the graphs, as discussed numerous times in the past, see e.g., [48, 35, 73, 87]. Roughly speaking,
for each non-simple part of each hole, we perform an incision along this part, we duplicate the vertices and
edges we cut along, and add zero-length edges between the two copies of each duplicated vertex.

Dense distance graphs and FR-Dijkstra. For a plane digraph H with weights from R≥0 ∪ {∞} and a distin-
guished set ∂H ⊆ V (H) of boundary vertices lying on O(1) faces of H, we denote by DDGH the complete
weighted graph on ∂H whose edge weights represent distances between all pairs of vertices of ∂H in H.

6This definition is slightly more general than the definition of a hole of a piece P ∈ T (G). Namely, the definition of an
r-division does not assume a fixed embedding of the entire G; it only assumes some fixed embeddings of individual pieces.
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DDGH can be computed in O
(
(|H|+ |∂H|2) log n

)
time using MSSP [36]. In particular, dense distance

graphs for all pieces H ∈ T (G) can be computed in O(n log2 n) time.
When H = {H1, . . . ,Hq} is a collection of plane graphs, we set DDG(H) :=

⋃
H∈HDDGH .

Lemma 5 (FR-Dijkstra [34, 59]). Given all DDGHi
, one can compute a single-source shortest paths tree

from any source s in DDG(H) in O
(∑q

i=1 |∂Hi| log2 n
)

time, where n = |V (DDG(H))|.7

We next state some fairly standard definitions and lemmas about representing distances between some
vertices of G of interest using unions of dense distance graphs of a recursive decomposition’s (or r-division’s)
pieces (for instance cf. [58]), adapted to our notation. We include their proofs for completeness, but the
reader may safely skip them. For example, Lemma 7 captures the well-known observation of [34] that in
order to compute a shortest path between any pair of vertices of G, it is enough to compute a shortest path
in a union of dense distance graphs from T (G) with only O(

√
n) vertices in total.

Lemma 6. Let Q be some collection of pieces from T (G) such that:

1. for each leaf piece L ∈ T (G), either L or some ancestor of L is in Q,

2. for each H ∈ Q, if some ancestor of H is in Q, then the parent of H is also in Q.

Then for any u, v ∈ V (DDG(Q)), distDDG(Q)(u, v) = distG(u, v).

Proof. Let us note that if for some H ∈ T (G) no ancestor of H belongs to Q, then ∂H ⊆ V (DDG(Q)). We
prove this claim by induction on the level8 ` of piece H. For ` = 0, we get H ∈ Q, so clearly ∂H ⊆ V (H) ⊆
V (DDG(Q)). Suppose ` ≥ 1. The statement is trivial if H ∈ Q. Otherwise, consider the children H1, . . . ,Hk

of H. By induction we get ∂Hi ⊆ V (DDG(Q)). So in fact we have ∂H ⊆
⋃k
i=1 ∂Hi ⊆ V (DDG(Q)).

Since the edges of each DDGH encode lengths of some paths in G, we have that distDDG(Q)(u, v) ≥
distG(u, v). We now prove that there is a path of length at most distG(u, v) in DDG(Q). Let P be some
shortest u→ v path in G. Let H be a piece of T (G) of minimum level that contains P . We prove our claim
by induction on the level ` of H.

First note that by property 1 of Q, if H ∈ Q or no descendant of H belongs to Q, then H has a nearest
ancestor H∗ (possibly H∗ = H) such that H∗ ∈ Q. Observe that V (DDG(Q)) ∩ V (H) ⊆ ∂H∗. Hence,
u, v ∈ ∂H∗ and thus distDDG(Q)(u, v) ≤ distDDGH∗ (u, v) = distH∗(u, v) ≤ distH(u, v) = distG(u, v).

So we can assume that H /∈ Q and some descendant of H belongs to Q. Note that then we have ` ≥ 1
and thus H is not a leaf. By property 2 of Q, we have that no ancestor of H belongs to Q. So for any
child Hi of H, no ancestor of Hi belongs to Q. We have proved that this implies ∂Hi ⊆ V (DDG(Q)). Let
us split P into maximal subpaths P1, . . . , Pk such that each Pi = ui → vi is entirely contained in a single
child Hi of H. Then for each i we have {ui, vi} ⊆ {u, v} ∪ ∂Hi ⊆ V (DDG(Q)) so by induction we get that
distDDG(Q)(ui, vi) ≤ distG(ui, vi) which implies distDDG(Q)(u, v) ≤ distG(u, v).

Let L be some leaf of T (G). We define the cone of L, denoted coneG(L), to be the collection of pieces
of T (G) containing L, all ancestors of L, and all siblings of (weak) ancestors of L. For some collection L of
leaf pieces of T (G), we define coneG(L) =

⋃
L∈L coneG(L).

Lemma 7 ([58, 34]). Let L be some collection of leaf pieces of T (G). Then:

1. For any u, v ∈ V (DDG(coneG(L))), distG(u, v) = distDDG(coneG(L))(u, v).

2.
∑
H∈coneG(L) |∂H| = O

(√
n|L|

)
.

7In particular Hi may be a single edge. This way, this lemma captures also the case when we compute shortest paths in a
collection of DDGs with some auxiliary vertices and edges.
8Here, by level of H we mean the depth of the subtree of T (G) rooted at H.
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Proof. To obtain item 1 it is enough to note that coneG(L) satisfies the requirements posed on the collection
Q in Lemma 6.

Let A be the set containing all ancestors of all the leaf pieces L ∈ L. We show item 2 by bounding the
sum X =

∑
H∈A |∂H|. Since the number of boundary vertices of a piece is bounded by the sum of numbers

of boundary vertices of its parent and its sibling, the sum
∑
H∈coneG(L) |∂H| of our interest can be larger

from X only by a constant factor.
Recall that T (G) admits an r-division for any r ∈ [1, n], i.e., there exists such r-divisionR thatR ⊆ T (G)

and the boundary of each piece of R equals the boundary of that piece in T (G). Let us split A into two
parts: let A1 contain those H ∈ A that are descendants of some piece P ∈ R, and let A2 = A \ A1. Let
Xi =

∑
H∈Ai

|∂H|.
Since each L ∈ L is a descendant of a unique piece P ∈ R, we now bound the sum of |∂H| over all

ancestors of L that are descendants of P . Recall (Section 2) that if H is a piece in a recursive decomposition
of an n-vertex graph, then |∂H| = O(

√
n/cd) where d is the depth of H in that decomposition. Consider

the subtree of T (G) rooted at P – it forms a recursive decomposition T (P ) of P with some initial boundary
vertex set |∂P | of size O(

√
r). So the sum of |∂H| over all ancestors of L that are descendants of P is

actually equal to the sum of |∂H| over all ancestors H of L in T (P ). Since each ancestor has distinct
integral depth, this sum is O(

∑∞
i=0

√
|P |/ci) = O(

√
|P |) = O(

√
r). Hence X1 = O(|L| ·

√
r). On the other

hand, it is known that the sum of boundary nodes of all (weak) ancestors of the pieces that constitute R
is O(

∑
P∈R |∂P |) = O(n/

√
r) (cf. the discussion after Corollary 5.1 in [50]) and thus this is also an upper

bound on X2. So we obtain X = X1 + X2 = O(n/
√
r + |L| ·

√
r). By choosing r = n/|L|, we obtain

X = O(
√
n · |L|) as desired.

Let R be an r-division with few holes of G and T (P ) be a recursive decomposition of P ∈ R with the
root boundary set to ∂P . For any v ∈ V (G) \ ∂R, let Lv be some leaf containing v in the unique piece
Pv ∈ R containing v. For any X ⊆ V (G) let us define coneR(X) = R∪

⋃
v∈X\∂R conePv (Lv).

Lemma 8 ([58, 34]). Let X ⊆ V (G) be non-empty. Then:

1. For any u, v ∈ V (DDG(coneR(X))), distG(u, v) = distDDG(coneR(X))(u, v).

2.
∑
H∈coneR(X) |∂H| = O

(
n/
√
r + min

(√
n · |X|, |X| ·

√
r
))

.

Proof sketch. The proof is completely analogous to that of items 1 and 2 of Lemma 7. It is enough to glue the
individual decompositions T (P ) into a single decomposition T ′(G) such that the root has O(n/r) children
instead of just 2: the individual pieces of R. Then item 1 follows by Lemma 6. Let Y =

∑
H∈coneR(X) |∂H|.

Note that Y = O(n/
√
r + |X| ·

√
r). If we have r = n/|X| ≤ r, then we can obtain the bound Y =

O(
√
n · |X|) in the proof of Lemma 7. Otherwise, |X| ≤ n/r, so Y = O(n/

√
r + |X| ·

√
r) = O(n/

√
r). So

Y = O(n/
√
r +

√
n · |X|) in all cases as well.

Fully dynamic r-divisions. Many dynamic algorithms for planar graphs maintain r-divisions and useful
auxiliary data structures under dynamic updates. The exact set of supported updates to G varies; e.g.,
[34, 36, 35] support only edge weight changes, [60] assumes embedding-preserving insertions, whereas [37, 62]
only assume that the graph G remains planar at all times. We stick to the last, most general setting. The
core of the construction behind the following theorem is due to Klein and Subramanian [37, 62].

Let us slightly generalize the definition of an r-division to non-planar graphs. An r-division R of a (not
necessarily planar) graph, for r ∈ [1, n], is a decomposition of the graph into O(n/r) pieces, each of size
O(r), such that each piece P is plane and has O(

√
r) boundary vertices (denoted ∂P ), i.e., vertices shared

with some other piece of R. The definitions of ∂R and r-divisions with few holes remain unchanged. The
reason for this generalization will become clear in the following theorem, where we show how to maintain
an r-division with few holes for a dynamic planar graph, augmented with some infinite-weight edges that
might violate planarity, but not affect any other properties of the graph that we care about.
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Theorem 9. Let G = (V,E) be a weighted planar graph that undergoes edge deletions and edge insertions
(assumed to preserve the planarity of G). Let r ∈ [1, n].

There is a data structure maintaining an r-division with few holes R of some G+, where G+ can be
obtained from G by adding infinite-weight edges9, such that each piece P ∈ R:

1. has all its faces except its holes triangular, and

2. is accompanied with some auxiliary data structures that can be constructed in T (r) time given P and
use S(r) space.

The data structure uses O
(
n+ n

r · S(r)
)

space and can be initialized in O
(
n+ n

r · T (r)
)

time. After each
edge insertion/deletion, it can be updated in O(r + T (r)) worst-case time.

Proof. On initialization, we first connect and triangulate G using infinite-weight edges, thus obtaining G+.
Then, we compute an r-division R with few holes of G+ in linear time [84] and subsequently initialize the
auxiliary data structures. Let h ≥ 2 and c ≥ 8 be constants such that a single piece of the computed
r-division has at most c

√
r boundary vertices distributed over no more than h holes.

We will guarantee at all times that for any single piece P ∈ R, |∂P | ≤ 3c
√
r, and there exist at most 3h

faces of P such that any v ∈ ∂P lies on one of these faces, called holes of P . Moreover, each edge of G+ is
contained in at most two pieces of R: this is satisfied initially since the r-division of [84] forms a partition
of faces of G+.

Suppose that the removal of an edge e = uv is issued to G. We then replace e in each of the at most two
pieces P containing it with an infinite-weight edge. If, on the other hand, a new edge e = uv is inserted,
we add a new piece Pe consisting of a single edge e to R. Adding Pe may cause an endpoint of e, say u, to
become a boundary vertex of R. If u was not a boundary vertex before the insertion, it had to be a vertex
of a single piece Pu. At this point, since a new boundary vertex emerges in Pu, we might have ∂Pu > 3c

√
r

or ∂P might no longer lie on at most 3h faces of Pu. However, there surely exist some 3h + 1 faces whose
vertices include the whole set ∂Pu, and |∂Pu| ≤ 3c

√
r + 1. To fix our invariants, we first compute a cycle

separator C of Pu wrt. the boundary vertices of Pu in O(r) time, and replace Pu with two pieces Pu,1, Pu,2
– the two subgraphs of Pu induced by vertices weakly on one side of C. Clearly, the vertices of C become
new boundary vertices afterwards. Subsequently, we similarly break each of Pu,1, Pu,2 further into two parts
using a cycle separator wrt. the holes of this piece (see [84] for details). Each of the at most four resulting
pieces has at most 2

3 (3c
√
r + 1) + 2

√
2
√
r ≤ (2c + 2

√
2 + 2)

√
r ≤ 3c

√
r boundary vertices, and at most

2
3 · (3h+ 1) + 1 ≤ 2h+ 2 ≤ 3h holes.

Observe that a single edge update can introduce O(1) new pieces of size O(r) in the maintained r-
division, and the sizes of the existing pieces do not increase. For each of the affected pieces we recompute
the auxiliary data structures in T (r) time. As a result, after O(n/r) updates, there are still O(n/r) pieces,
each of size O(r) and with O(

√
r) boundary vertices distributed over O(1) holes of that piece. Consequently,

after every Ω(n/r) updates, we reinitialize R for the current graph G in O
(
n+ n

r · T (r)
)

time. Hence, the
amortized time to update R is O(r + T (r)).

Finally, observe that our data structure can be modified in a standard way (see e.g., [5]) to have
O(r + T (r)) worst-case update time bound instead of just an amortized one. This is possible since our
update procedure actually takes O(r + T (r)) worst-case time apart from once every k = Ω(n/r) updates
when the whole data structure is rebuilt in O

(
n+ n

r · T (r)
)

worst-case time. To this end we apply the
time-slicing technique. We use two copies of our data structure switching their roles every k/2 updates. One
copy is for handling at most k/2 updates and answering queries, and another is being gradually reinitialized
in chunks of Ω(r + T (r)) time (of either initialization or updates replayed) in the background.

Additively weighted Voronoi diagrams. Let G be a directed planar graph of size n with real edge-lengths,
and no negative-length cycles. Assume that all faces of G are triangles except, perhaps, a single face f .
Let S be the set of vertices that lie on f , called sites, i.e., S = V (f). Let us assign to each site s ∈ S a

9Note that G+ need not be planar.
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weight ω(s) ∈ R≥0 ∪ {∞}. The additively weighted distance distωG(s, v) between a site s ∈ S and a vertex
v ∈ V (G) is defined as ω(s) + distG(s, v).

The additively weighted Voronoi diagram of (S, ω) within G, denoted by VD(S, ω), is a partition of V (G)
into pairwise disjoint sets, one set Vor(s) for each site s ∈ S. The set Vor(s), which is called the Voronoi cell
of s, contains all vertices in V (G) that are closer (wrt. distωG) to s than to any other site in S.

In the following and throughout, whenever we work with Voronoi diagrams we assume that (1) G is
strongly connected, (2) shortest paths in G are unique, and (3) additively weighted shortest paths in G are
unique, i.e., for each v ∈ V (G) there is a unique site s minimizing distωG(s, v). Note that these assumptions
make the Voronoi cells well-defined and simply connected, and guarantee that they indeed form a partition of
V (G). We will explicitly ensure that these requirements are met for G,S and the weight function whenever
we define a Voronoi diagram on G.

There is a dual representation VD∗(S, ω) of Voronoi diagram VD(S, ω) as a tree of constant degree with
O(|S|) vertices and edges [50]. An efficient FR-Dijkstra based algorithm for computing VD∗(S, ω) was
presented by Charalampopoulos et al. [48].

Theorem 10 ([48]). Suppose that we have at hand a recursive decomposition T (G) of G, with the only hole
of G being f and S = V (f). Further suppose that we have DDGH computed for each piece H ∈ T (G).
Then, we can compute VD∗(S, ω) in O(

√
n · |S| log2 n) time.

Remark 11. The algorithm underlying Theorem 10 implicitly assumes that Vor(s) is non-empty for all
s ∈ S. We will explicitly ensure that this is the case whenever employing the above lemma.

In a point location query for some Voronoi diagram VD(S, ω), we are given a vertex v ∈ V (G) and are
requested to find the site s ∈ S such that v ∈ Vor(s) and also the value of distωG(s, v). Gawrychowski et
al. [50] showed the following result.

Theorem 12 ([50]). Suppose that we have at hand an MSSP data structure for G with sources the vertices
that lie on face f . Given some dual representation VD∗(S, ω), we can preprocess it in O(|S|) time, so that
point location queries for VD(S, ω) can be answered in O(log2 n) time.

3. Fully Dynamic Single-Source Shortest Paths

In this section we show our single-source exact distance oracle for planar graphs with O(n4/5 log2 n)
update time and O(log2 n) query time and thus prove Theorem 3. For simplicity, let us assume for now
that G is non-negatively weighted. We will describe how to handle negative edges in Section 3.1; we treat
them the same way as Kaplan et al. [35].

Theorem 3. Let G be a real-weighted planar digraph with a source s ∈ V (G). There exists an O(n log n)-
space data structure maintaining G under edge insertions, edge deletions, and source changes with worst-
case update time O(n4/5 log2 n) that can compute distG(s, v) for any v ∈ V (G) in O(log2 n) time. The
initialization time is O(n log2 n).

The base of our data structure is a dynamic r-division R with few holes, as given in Theorem 9. Note
that in our shortest paths problem, indeed adding infinite-weight edges to G does no harm. Hence, in the
following we work with the graph G+ from Theorem 9 when computing distances, but identify it, without
loss of generality, with our original graph G.

For technical reasons, related with the uniqueness of shortest paths, we would like to avoid dealing with
infinite weights in some of our data structures handling individual pieces. In the real-weighted fully dynamic
setting, however, we cannot fix a sufficiently large finite number, larger than all edge weights that will ever
appear in the future graph G, beforehand. Instead, we do the following. For each P ∈ R, let MP be a
sufficiently large finite number, e.g., larger than the sum of finite edge weights in P . Consider MP to be
an auxiliary data structure of P as in Theorem 9. We will use MP to simulate infinite edge weights in P ,
and also for detecting paths non-existent in the original graph G (but having infinite weight in G+ ∩ P ).
As a result, below we assume that each infinite weight in P (or any auxiliary data structure related to
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P ) is replaced by MP in all the computations performed locally on the piece P , whereas globally (when
performing some computation for many pieces at once, like the shortest paths algorithm of Lemma 5) we
treat all edge or path weights in P that are at least MP as infinite.

For each piece P ∈ R we store the following additional data structures.

� We store the recursive decomposition T (P ) with the initial boundary set to ∂P , and also DDGs for
all the pieces H ∈ T (P ).

� For each hole h of P , let Ph be the piece P after applying the following standard augmentations. First,
P is extended into a graph P ′h using O(r) vertices and edges of weight MP embedded inside either the
piece or other (than h) holes of P that would make P strongly connected and triangulated (except for
the hole h) without changing the distance between any pair of reachable vertices in P . The graph Ph
is in turn obtained from P ′h by changing P ′h’s edge weights into O(1)-size vectors as described in [88]
so that there is a unique shortest path (wrt. the lexicographical order on path weights, defined as the
coordinate-wise sum of the path’s individual edge weights) between any u, v ∈ V (Ph) with cost of the
form (distP ′h(u, v), ·). As proven in [88], one can compute Ph from P deterministically in linear time.
The O(1)-size vector weights, in turn, can be easily packed into usual positive single-number weights.

For each Ph, we store an MSSP data structure initialized for the hole h. Recall that an MSSP data
structure can be computed in O(r log r) time. Moreover, we store a recursive decomposition T (Ph) of
Ph with the boundary ∂Ph of the root piece set to ∂P ∩ V (h) of size O(

√
r). For each node (piece)

H ∈ T (Ph), we also store DDGH . Since the sum of sizes of all the pieces of T (Ph) is O(r log r),
computing all these dense distance graphs takes O(r log2 r) time (see Section 2).

Note that computing piecewise auxiliary data structures defined so far takes O(r log2 r) time. So, by
Theorem 9, they can be updated in O(r log2 r) worst-case time after G undergoes an update.

We also perform the following computations. We compute the values distG(s, b) for all b ∈ ∂R in
O
(
n/
√
r · log2 n

)
time by running the single-source shortest paths algorithm of Lemma 5 (FR-Dijkstra)

on the graph DDG(coneR(s)) – the correctness follows by Lemma 8. We also compute distPs
(s, u) for all

u ∈ Ps, where Ps is an arbitrary piece containing s using Dijkstra’s algorithm in O(r log r) time.
Consider a query distG(s, v). If the shortest s → v path in G does not go through ∂R, then it is

fully contained in Ps and therefore v ∈ Ps and distG(s, v) = distPs
(s, v), i.e., we have distG(s, v) already

computed. Otherwise, let Pv be an arbitrary piece containing v. Observe that we have distG(s, v) =
minb∈∂Pv

{distG(s, b)+distPv
(b, v)} where the minimizer b corresponds to a boundary vertex on some shortest

s→ v path in G.
Let us first consider a preliminary solution. Recall that we have already computed distG(s, b) for all

b ∈ ∂Pv ⊆ ∂R. Then, we can find the minimum by iterating over all O(
√
r) vertices b ∈ ∂Pv, computing

distPv
(b, v) using one of the MSSP data structures stored for Pv in O(log n) time. This yields the following

result, as updates are processed in O(r log2 r+n/
√
r · log2 n) time, queries are answered in O(

√
r log n) time,

while the space usage per piece is O(r log r).

Proposition 13. Let G be a real-weighted planar digraph with a source s ∈ V (G). For any x ∈ [1, n1/3],
there exists an O(n log n)-space data structure maintaining G under edge insertions, edge deletions, and
source changes with worst-case update time O(n log2 n/x) that can compute distG(s, v) for any v ∈ V (G) in
O(x log n) time. The initialization time is O(n log2 n).

Remark 14. The update time in Theorem 3 dominates the update time of the data structure underlying
the above proposition for x = Ω(n1/5). Further, note that the data structure underlying Proposition 13 is
essentially the same as Klein’s all-pairs dynamic distance oracle for planar graphs [36], with part of the
query procedure offloaded to the update procedure.

Next, we will employ the efficient construction algorithm of dual Voronoi diagrams of [48] and the efficient
point location mechanism of [50], in order to be able to compute the minimizer b ∈ ∂Pv in O(log2 n) time,
while keeping the update time strongly sublinear.

After the initialization and each update, once R and all auxiliary data structures are updated, and we
have run FR-Dijkstra from s, we compute for each P ∈ R a point location data structure.
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Lemma 15. Given a weight function ω : ∂P → R ∪ {∞}, one can compute in O(r3/4 log2 r) time a data
structure L(P ) answering the following queries in O(log2 r) time: given any v ∈ V (P ), compute the value
minb∈∂P {ω(b) + distP (b, v)} along with the minimizer b.

Proof. Since ∂P is a union of O(1) sets ∂Ph, we can compute the desired minimum over each ∂Ph separately
and then take the minimum over all h.

Let us first note that negative values of ω are not a problem. We can turn negative weights into non-
negative by adding some common large value to the weights of all sites. We can thus suppose wlog. that all
values of ω are non-negative.

If all the weights are infinite, the queries can be answered trivially in O(1) time. So in the following
assume that there is at least one site whose weight is finite.

Let S = ∂Ph = {s1, . . . , sk} be the set of sites. Recall that Ph has finite positive real weights, is strongly
connected, has unique shortest paths, and has a single face h that is possibly non-triangular that contains
all the sites S.

First, let us take care of the possibility that there are empty Voronoi cells and ensure that additively
weighted shortest paths are unique. Consider a site s that belongs to the Voronoi cell of a different site s′.
We will substitute ω(s) by distωPh

(s′, s) and consider s as a proxy for s′, i.e., whenever we find that some
vertex v belongs to the Voronoi cell of s, we will know that in effect v belongs to the Voronoi cell of s′ and
return s′ instead. We do this as follows. Let a be an artificial vertex with k outgoing edges: for i ∈ [1, k],
edge ei = asi with weight ω(si). We run FR-Dijkstra on {DDGPh

, e1, . . . , ek} with source a in O(
√
r log2 r)

time. Since Ph is strongly connected and contains only finite-weight edges, and at least one additive weight
is finite, all computed distances are finite. For each i, denote the computed distance from a to si by d(si).
We then consider a new weight function ω̂(si) = min{ω(si), d(si)}. A site s with ω(s) > d(s) is then a proxy
for its ancestor at depth one in the computed shortest paths tree. Finally, we will break ties wrt. distω̂

in favor of sites with larger additive weights. Let r(i) = |{j : j 6= i, ω(j) > ω(i)}|. We will break ties by
considering (ω̂(si), r(i)) instead of ω̂(si) as the weight of site si, adding a second coordinate to each edge
weight in Ph, set to 0, and comparing additively weighted distances lexicographically. Clearly, this extension
does not break any of the properties of Ph. Since all edge-weights in Ph are positive, this guarantees that
each site belongs to its own Voronoi cell and that for each v ∈ V (Ph) there is a unique site s minimizing
distω̂Ph

(s, v).
Therefore, we can invoke Theorem 10 to construct the dual representation VD∗(S, ω) of the Voronoi

diagram VD(S, ω). This requires O
(√

r|∂Ph| log2 n
)

= O
(
r3/4 log2 n

)
time.

Then, we construct the point location data structure of Theorem 12 for VD∗(S, ω) in O(|∂Ph|) = O(
√
r)

time. Note that we have an MSSP data structure for Ph for hole h and hence point location queries can
then be answered in O(log2 n) time.

We invoke Lemma 15 with weight function ω(b) := distG(s, b) in order to construct L(P ) for each P ∈ R.
This requires O

(
n/r1/4 · log2 n

)
time in total.

Now, we can compute distG(s, v) for a query vertex v as follows. If the shortest s → v path in G does
not go through ∂R, then as explained before it has already been computed. Otherwise, recall that we have
distG(s, v) = minb∈∂Pv{distG(s, b) + distPv (b, v)}. This case can be reduced to a single query to the data
structure L(Pv). Each query can be thus answered in O(log2 n) time.

The worst-case update time is O(r log2 r+ n
r1/4

log2 r). By setting r = n4/5 we get O(n4/5 log2 n) worst-
case update time. Since the space usage per piece is O(r log r), we need O(n log n) space.

Remark 16. Our data structure can be extended to report, following the computation of distG(s, v), a
shortest s→ v path Q in time nearly linear in the number of edges of Q. This follows easily by the fact that
the MSSP data structure [36] can report shortest paths efficiently (see e.g., [35] for details). Therefore, we
can efficiently expand the used edges of dense distance graphs and the shortest b→ v path into actual edges.

Remark 17. The source-change operation in Theorem 3 can be easily simulated using a single edge insertion
and a single edge deletion. For this, it suffices to add a fixed super-source s′ to G, with a single outgoing
edge to the actual source s of G.
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3.1. Handling Negative Edges

Recall that p : V (H) → R is called a feasible price function of H if distH(u, v) + p(u) − p(v) ≥ 0 for
all u, v ∈ V (H). A feasible price function is guaranteed to exist if H contains no negative-cost cycle. It is
well-known that, provided that a graph H is strongly connected, a vector of distances from any vertex of H
constitutes a feasible price function of H.

As in the fully dynamic all-pairs algorithm of [35], we maintain functions φ : ∂R → R and φP : ∂P → R,
where P ∈ R, such that φ is some feasible price function of G restricted to ∂R, and each φP is a feasible
price function of P .

Since single-source shortest paths in planar graphs with negative weights can be computed in O(n log2 n)
time [89, 90], each φP can be seen as an accompanying data structure of piece P computable in O(r log2 r)
time and maintained by the fully dynamic r-division algorithm. The functions φP allow to treat individ-
ual graphs P and Ph as non-negatively weighted when computing all the needed DDGs and MSSP data
structures, and also point location data structures L(P ).

It is known [35, 59] that the FR-Dijkstra algorithm (as in Lemma 5) can handle negative weights
in DDG(H) with no asymptotic overhead if a feasible price function on DDG(H) is provided. There-
fore, we would like to have a feasible price function on DDG(coneR(s)) to compute distances from s in
DDG(coneR(s)) needed by the update algorithm. We can extend φ from ∂R to all vertices in DDG(coneR(s))
as follows. Note that all pieces in coneR(s) except of those in R have their parents also in coneR(s). We
call those pieces H ∈ coneR(s) for which we know the value of φ on all of ∂H processed. Initially, only the
pieces P ∈ R are processed by the definition of φ. While there are still unprocessed pieces, we take any
unprocessed piece H whose parent A ∈ T (P ) has already been processed. Let H ′ be the sibling of H in
T (P ). Observe that φP is a feasible price function of A as well. We extend φ to boundary vertices of H,H ′

by computing shortest paths on DDG({H,H ′}) from vertices ∂A, with the initial distance to each v ∈ ∂A
set to φ(v), and using FR-Dijkstra (Lemma 5) with price function φP . This way, only the initial distances
of ∂A are possibly negative from the point of view of FR-Dijkstra. This does not constitute a problem for
either Dijkstra’s algorithm or FR-Dijkstra though (see [35]; one can treat the initial distances as weights of
edges going out of a super-source; these weights can be all increased by the same large value to be made
positive). One can show from the definition of φ that the values of φ on ∂A will not be altered and the
computed distances form a feasible price function on ∂H ∪∂H ′ in G. Hence, given that ∂A ⊆ ∂H ∪∂H ′, we
can process the children H,H ′ of a processed piece A in O((|∂H| + |∂H ′|) log2 n) time. Summing over all
pieces, we obtain by Lemma 8 that extending φ to all V (DDG(coneR(s))) takes O(n/

√
r log2 n) time. This

cost is therefore negligible.
The “global” price function φ : ∂R → R is recomputed from scratch in O(n log2 n) time (by running the

algorithm of [89] on the entire G) every time R is reinitialized (i.e., once per each O(n/r) updates). Note
that an edge deletion or weight increase cannot break the feasibility of φ. We might need to recompute
φ only upon insertion or weight decrease of some edge uv. As shown by Kaplan et al. [35], the new
“global” price function φ′ (or a negative cycle) can be found by computing distances from v to ∂R∪ {u} in
DDG(coneR(u, v)) (before applying the insertion) using FR-Dijsktra and the old price function φ. This can
be done in O(n/

√
r log2 n) time by first extending the old φ to V (DDG(coneR(u, v))) as described above

and then running the single-source shortest paths algorithm of Lemma 5.

3.2. A Dynamic Closest Facility Data Structure

We can generalize the dynamic single-source shortest paths data structure as follows. Suppose we replace
a single source vertex s with a set of facilities F ⊆ V . Given F , for a query vertex v we would like to compute
minf∈F {distG(f, v)}, and also possibly f ∈ F minimizing this expression. A dynamic update would consist
of either an edge update or changing the set F . In other words, such a problem can be seen as dynamic point
location in a Voronoi diagram wrt. F , where each update either changes the graph or resets the Voronoi
diagram of interest.

In this setting, we consider the following simple generalization of the single-source data structure. Let
the update procedure first compute the distances d(b) = minf∈F {distG(f, b)} for all b ∈ ∂R. Note that by
Lemma 8 this can be achieved by computing single-source shortest paths in the graph DDG(DF ), where
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DF = coneR(F ), extended with 0-weight edges sf , where s is an auxiliary super-source. By Lemma 5
this can be done in O((

√
n|F | + n/

√
r + |F |) log2 n) time. By using weights ω := d in the individual

point-location data structures L(P ), P ∈ R, a single point location query on L(Pv) (recall that Pv is some
piece containing v) would compute the desired closest facility fv minimizing distG(fv, v) unless the sought
(weighted) shortest fv → v does not go through a boundary vertex of R. We could in principle handle
such paths by proceeding as in the single-source case and computing shortest paths naively in each piece
containing a facility. However, this could take time Ω(r ·min(n/r, |F |)). Recall that the other components of
our update procedure take time Õ(r+

√
n|F |+ n/r1/4) which is Õ(

√
n|F |+ n4/5) if we again set r = n4/5.

The update time would then be linear in n even for moderately large facility set sizes, e.g., |F | = Ω(n1/5).
To improve upon this simple approach, we proceed as follows. Let (ρm, . . . , ρ1) be such a sequence of

integers that ρm = r, ρ1 = O(1) and ρi+1/ρi = 2 for all i < m. For each P ∈ R we store a recursive
(ρm, . . . , ρ1)-division consisting of pieces of T (P ) (cf. Section 2). Let RP,i be the ρi-division of P . All RP,i
can be computed in linear time given T (P ) [84]. Note that Ri, defined as the union of RP,i over all pieces
P ∈ R, actually forms an ρi-division with few holes of the entire graph G. In particular, we have Rm = R.

We store the extended pieces Qh (recall how we obtained extended pieces Ph with unique shortest paths
from P in the single-source case) plus their recursive decompositions T (Qh), DDGs, and an MSSP data
structure for all pieces Q of all T (P ) instead of just the pieces of Rm = R as we did in the single-source
case. However, we stress that these auxiliary components for a piece Q ⊆ P where P ∈ R, are counted as
accompanying data structures of the piece P . So, we compute O(1) fresh recursive decompositions T (Qh)
for each piece Q ∈ T (P ) – computing each of them takes O(|Q| log2 n) time. As a result, by the bound∑
Q∈T (P ) |Q| = O(|P | log |P |), the time to compute accompanying data structures of piece P increases to

O(r log3 n).

Given the set of facilities F , let j be such that ρj = Θ
(

min
(
n
|F | , r

))
. Redefine DF = coneRj (F ). Again,

let us compute distances d(b) = minf∈F {distG(f, b)} (and the closest facilities) for all b ∈
⋃
H∈DF

|∂H|
using FR-Dijkstra on DDG(DF ) extended with a super-source s and auxiliary edges sf , f ∈ F . This takes

O
((√

n|F |+ n/
√
ρj

)
log2 n

)
= O

(√
n|F | log2 n

)
time by Lemmas 5 and 8.

It only remains to show how to handle computation of closest facilities for
v ∈ V \

⋃
H∈DF

∂H. Recall that the pieces DF cover the entire G. Let Hv be the lowest piece DF that
contains v. By the definition of DF , no facility f is an internal (non-boundary) vertex of Hv. Consequently,
by Lemma 15, the closest facility to v can be found in O(log2 n) time using a single query to the data
structure L(Hv). For this to be possible, upon update we need to build the data structures L(H) for all

H ∈ DF . By Lemma 15, this takes O
(∑

H∈DF

√
|H| · |∂H| log2 n

)
time. Let us now bound this sum. First,

let us consider the sum restricted to the pieces H ∈ DF ∩ Rj , i.e., the pieces of the ρj-division Rj of G.
Since ρj = Ω(n/|F |) or ρj = Ω(r) we get:

O

 ∑
H∈DF∩Rj

√
|H| · |∂H| log2 n

 = O

(
n

ρj
· ρ3/4j log2 n

)
= O

((
n3/4 · |F |1/4 +

n

r1/4

)
log2 n

)
.

On the other hand, if H /∈ DF ∩Rj , then H ∈ conePf
(Lf ), where f ∈ F \ ∂Rj , Pf is the unique piece of Rj

containing f , and Lf is some leaf of T (Pf ) containing f . For a fixed f , by the definition of conePf
(Lf ),

there are O(log n) pieces H satisfying this, at most two per each level i of T (Pf ). Hence, the sum of√
|H| · |∂H| over such pieces can be bounded by

∑∞
i=0

√
|Pf | ·

√
|Pf |/ci = O(ρ

3/4
j ). Summing over all f ,

and using ρj = O(n/|F |), we get

O

 ∑
H∈DF \Rj

√
|H| · |∂H| log2 n

 = O
(
|F | · ρ3/4j log2 n

)
= O

(
n3/4 · |F |1/4 log2 n

)
.

To conclude, the update time is O
((
n3/4 · |F |1/4 + n

r1/4

)
log2 n+ r log3 n

)
. By setting r = (n/ log n)4/5

we obtain the following theorem.
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Theorem 18. Let G be a real-weighted planar digraph with a set F ⊆ V of facilities. There exists
an O(n log2 n)-space data structure maintaining G under edge insertions, edge deletions, and changes

of the facilities set F with O
((
n3/4 · |F |1/4 + n4/5

)
log11/5 n

)
worst-case update time that can compute

minf∈F {distG(f, v)} along with the respective closest facility of v for any v ∈ V (G) in O(log2 n) time. The
initialization time is O(n log3 n).

4. Fully Dynamic Strongly Connected Components

In this section we show that a strategy similar to that of Section 3 can be used to obtain a fully dynamic
strong-connectivity algorithm. Again, we maintain an r-division R and some auxiliary data structures for
all the individual pieces. Formally, using a dynamic r-division as in Theorem 9 may require introducing
new infinite-weight edges to G which in turn may change the reachability relation in G. We circumvent
this problem by setting the weights of the original edges of G to 0, and all auxiliary edges to plus infinity
(simulated in the implementation by sufficiently large values MP inside individual pieces, as in Section 3).
This way, u can reach v in G if and only if distG(u, v) = 0, and otherwise distG(u, v) = ∞. All known
properties of reachability in plane graphs also extend to reachability using 0-weight paths (assuming non-
negative weights). In the following, whenever we say that v is reachable from u, or there exists a u → v
path, we formally mean distG(u, v) = 0.

As in Section 3, for each piece of R we store a recursive decomposition, dense distance graphs and MSSP
data structures. All these data structures are also maintained for pieces of R with all edges reversed – for
a piece P we call this graph the reverse of P and denote it by P rev.

Another ingredient is a collection of reachability certificates XP for all the pieces, as defined in the
following lemma due to Subramanian [62], slightly adjusted to certify 0-weight paths.

Lemma 19 ([62]). Let P ∈ R be a (non-negatively weighted) piece. There exists a directed graph XP , where
∂P ⊆ V (XP ), of size O(

√
r log r) satisfying the following property: for any u, v ∈ ∂P , distP (u, v) = 0 if and

only if there exists a u→ v path in XP . The graph XP can be computed in O(r log r) time.

We include the reachability certificate in the set of auxiliary piecewise data structures. Since reachability
certificates can be computed in O(r log r) time, maintaining them does not incur any additional asymptotic
cost. The following lemma is a direct consequence of Lemma 19.

Lemma 20. For any u, v ∈ ∂R, u can reach v in G if and only if u can reach v in X =
⋃
P∈RXP .

Proof. Let u, v ∈ ∂R. Since each XP certifies the reachability between ∂P in P , clearly a u→ v path in X
implies existence of a u→ v path in G. Now suppose there is a u→ v path Q in G. Split Q into maximal
subpaths Q1, . . . , Qk, such that each Qi is fully contained in a single piece Pi ∈ R. For each i, the endpoints
a, b of Qi are contained in ∂Pi and hence there exists a a→ b path in XP ⊆ X. Consequently, there exist a
u→ v path in X.

To handle an edge update, after R and auxiliary data structures are updated, we compute the strongly
connected components of X (defined as in Lemma 20) in O(|X|) = O(n/

√
r) time using any classical linear-

time algorithm. For any b ∈ ∂R, let sX(b) denote an integer identifier of b’s strongly connected component
in X. By additionally sorting the SCCs of X topologically we can further assume that sX satisfies the
following property: if a, b ∈ ∂R are not strongly connected, but a can reach b in X then sX(a) < sX(b).
By Lemma 20, for a, b ∈ ∂R, we have sX(a) = sX(b) if and only if a and b are strongly connected in G;
moreover, if a can reach b in G, then sX(a) ≤ sX(b).

We also define and maintain similar SCC-identifiers sP for individual pieces P , i.e., for u, v ∈ V (P ),
sP (u) = sP (v) implies u, v are strongly connected in P , whereas sP (u) < sP (v) implies there is no v → u
path in P . Clearly, the identifiers sP can be recomputed in O(r) time given P , so we also include them into
the set of auxiliary per-piece data structures.

For any Q ∈ {X} ∪R, let SQ be the set of used identifiers of the form sQ(·). Observe that we can easily
guarantee that the sets SQ are pairwise disjoint, e.g., by using disjoint integer ranges for different sets SQ.
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The final component of our data structure, is, again a collection of per-piece point location data struc-
tures. For each P ∈ R, we have two point location data structures L(P rev) and L(P ) of Lemma 15. After
each edge update, L(P rev) is computed for P rev with weight function ω = sX . On the other hand, L(P )
is initialized with weight function ω = −sX . As in Section 3, all these point location data structures are
recomputed in O(n/r1/4 · log2 n) time (over all pieces).

We now describe how our data structure handles a query for an SCC identifier of a vertex v. The
returned identifier always comes from the set

⋃
Q∈{X}∪R SQ. Let Pv be some piece containing v. Let smin

be the value computed by L(P revv ) for vertex v. Let smax be minus the value computed by L(Pv) for v. If
either of smin, smax equals ±∞ or smin 6= smax holds, we return sPv

(v). Otherwise, we return smin ∈ SX .
The following lemma establishes the correctness of this query procedure.

Lemma 21. Let u, v ∈ V (G) and let su, sv be the respective identifiers returned by the query procedure.
Then, su = sv if and only if u and v are strongly connected in G.

Proof. Suppose su = sv. If su ∈ SP for some piece P , then su = sv implies that u and v are strongly
connected in P and thus also in G. So suppose sv ∈ SX . Take any b ∈ ∂R such that sv = sX(b). We now
prove that v and b are strongly connected in G. Similarly we prove that u and b are strongly connected
in G. By transitivity it will follow that u and v are indeed strongly connected.

Let Pv, smin, smax be defined as in the query procedure’s description. Recall that sv ∈ SX implies that
smin, smax are finite and sv = smin = smax. Since all edges of Pv have weight 0, and smax is finite, smax in fact
represents the maximum value sX(a) among those a ∈ ∂Pv such that a path a→ v exists in Pv. Similarly,
observe that smin represents the minimum value sX(c) among those c ∈ ∂Pv such that a path c→ v exists
in P revv , i.e., such that a path v → c exists in Pv. Let us denote by a and c the respective vertices of ∂Pv
attaining the maximum and minimum values of sX . Since sX(a) = sX(c), there exists a path c → a in G.
However, by the definition of a and c, paths a → v and v → c also exist in G, and hence a, v and c are
strongly connected in G. Since a is clearly strongly connected to b by sX(a) = sX(b), indeed v and b are
strongly connected in G.

Now let us move to proving the “ ⇐= ” direction. Suppose u and v are strongly connected in G. First
consider the case when there exists some vertex b ∈ ∂R located in the same strongly connected component
of G as u and v. In this case we prove that sv = sX(b). An analogous proof that su = sX(b) will establish
su = sv. Since v and b are strongly connected, there exist some paths Q1 = v → b and Q2 = b → v in G.
Let v1 be the first vertex on Q1 such that v1 ∈ ∂Pv – note that v1 necessarily exists since b ∈ ∂R. Similarly
set v2 to be the last vertex on Q2 such that v2 ∈ ∂Pv. Observe that the subpaths v → v1 and v2 → v of
Q1 and Q2 respectively lie entirely inside Pv. Hence, smin and smax are finite and we have smax ≥ sX(v2)
and smin ≤ sX(v1). Recall that there exists a walk v → v1 → b → v2 → v, so in fact v1, v2, b are strongly
connected, i.e., sX(v1) = sX(v2) = sX(b). Thus, we obtain smin ≤ sX(b) ≤ smax.

On the other hand, let a ∈ ∂Pv be such that a path a → v exists in Pv and smax = sX(a) (a exists by
smax 6= ±∞). Similarly, let c ∈ ∂Pv be such that a path v → c exists in Pv and smin = sX(c). Since a path
a → c through v exists in Pv (so also in G), we have that smax ≤ smin by the fact that the identifiers SX
respect the topological order of the SCCs of X. Recall that we have already proved smin ≤ sX(b) ≤ smax so
in fact we have smin = smax = sX(b), and consequently sv = sX(b).

Finally, suppose there is no vertex of ∂R in the SCC of G containing u and v. First, this implies that
u, v /∈ ∂R and all u → v and v → u paths are contained in a single, unique piece P . This implies that
sP (u) = sP (v). Hence it is sufficient to prove su = sP (u) and sv = sP (v). We prove the latter equality;
proving the former is analogous. Recall that sv is not set to sP (v) only if both smin, smax are finite and
smin = smax. This can only happen if there exists vertices a, c ∈ ∂P such that a can reach v in P , v can
reach c in P and sX(c) = smin = smax = sX(a), i.e., a and c are strongly connected in G. But this implies
that a, c and v are strongly connected in G, which contradicts the fact that the SCC of v in G does not
contain vertices of ∂R.

The running time analyses of both the update and query procedures are identical to the analyses of
Section 3. Hence, we have proved the following theorem.
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Theorem 4. Let G be a planar digraph. There exists an O(n log n)-space data structure maintaining G
under edge insertions and deletions with O(n4/5 log2 n) worst-case update time that can compute the iden-
tifier of the strongly connected component of any v ∈ V (G) in O(log2 n) time. The initialization time is
O(n log2 n).
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